About the Project

quantum scattering

AdvancedHelp

(0.001 seconds)

11—20 of 21 matching pages

11: 12.17 Physical Applications
Dean (1966) describes the role of PCFs in quantum mechanical systems closely related to the one-dimensional harmonic oscillator. …
12: 18.39 Applications in the Physical Sciences
The Quantum Coulomb Problem: Scattering States
13: 10.73 Physical Applications
Bessel functions enter in the study of the scattering of light and other electromagnetic radiation, not only from cylindrical surfaces but also in the statistical analysis involved in scattering from rough surfaces. … …
§10.73(ii) Spherical Bessel Functions
Accordingly, the spherical Bessel functions appear in all problems in three dimensions with spherical symmetry involving the scattering of electromagnetic radiation. …In quantum mechanics the spherical Bessel functions arise in the solution of the Schrödinger wave equation for a particle in a central potential. …
14: William P. Reinhardt
Reinhardt is a frequent visitor to the NIST Physics Laboratory in Gaithersburg, and to the Joint Quantum Institute (JQI) and Institute for Physical Sciences and Technology (ISTP) at the University of Maryland. … Older work on the scattering theory of the atomic Coulomb problem led to the discovery of new classes of orthogonal polynomials relating to the spectral theory of Schrödinger operators, and new uses of old ones: this work was strongly motivated by his original ownership of a 1964 hard copy printing of the original AMS 55 NBS Handbook of Mathematical Functions. …
15: Bibliography G
  • M. Gavrila (1967) Elastic scattering of photons by a hydrogen atom. Phys. Rev. 163 (1), pp. 147–155.
  • D. Gómez-Ullate and R. Milson (2014) Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials. J. Phys. A 47 (1), pp. 015203, 26 pp..
  • R. G. Gordon (1969) New method for constructing wavefunctions for bound states and scattering. J. Chem. Phys. 51, pp. 14–25.
  • K. Gottfried and T. Yan (2004) Quantum mechanics: fundamentals. Second edition, Springer-Verlag, New York.
  • W. Greiner, B. Müller, and J. Rafelski (1985) Quantum Electrodynamics of Strong Fields: With an Introduction into Modern Relativistic Quantum Mechanics. Texts and Monographs in Physics, Springer.
  • 16: Bibliography M
  • N. W. Macfadyen and P. Winternitz (1971) Crossing symmetric expansions of physical scattering amplitudes: The O ( 2 , 1 ) group and Lamé functions. J. Mathematical Phys. 12, pp. 281–293.
  • I. Marquette and C. Quesne (2016) Connection between quantum systems involving the fourth Painlevé transcendent and k -step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial. J. Math. Phys. 57 (5), pp. Paper 052101, 15 pp..
  • P. L. Marston (1992) Geometrical and Catastrophe Optics Methods in Scattering. In Physical Acoustics, A. D. Pierce and R. N. Thurston (Eds.), Vol. 21, pp. 1–234.
  • F. A. McDonald and J. Nuttall (1969) Complex-energy method for elastic e -H scattering above the ionization threshold. Phys. Rev. Lett. 23 (7), pp. 361–363.
  • A. Messiah (1961) Quantum Mechanics. Vol. I. North-Holland Publishing Co., Amsterdam.
  • 17: Bibliography S
  • P. Sarnak (1999) Quantum Chaos, Symmetry and Zeta Functions. Lecture I, Quantum Chaos. In Current Developments in Mathematics, 1997 (Cambridge, MA), R. Bott (Ed.), pp. 127–144.
  • L. Schlessinger (1968) Use of analyticity in the calculation of nonrelativistic scattering amplitudes. Phys. Rev. 167, pp. 1411–1423.
  • K. Schulten and R. G. Gordon (1975a) Exact recursive evaluation of 3 j - and 6 j -coefficients for quantum-mechanical coupling of angular momenta. J. Mathematical Phys. 16 (10), pp. 1961–1970.
  • C. Schwartz (1961) Variational calculations of scattering. Ann. Phys. 16, pp. 36–50.
  • M. J. Seaton (1983) Quantum defect theory. Rep. Prog. Phys. 46 (2), pp. 167–257.
  • 18: Bibliography F
  • A. S. Fokas, A. R. Its, and A. V. Kitaev (1991) Discrete Painlevé equations and their appearance in quantum gravity. Comm. Math. Phys. 142 (2), pp. 313–344.
  • K. W. Ford and J. A. Wheeler (1959a) Semiclassical description of scattering. Ann. Physics 7 (3), pp. 259–286.
  • K. W. Ford and J. A. Wheeler (1959b) Application of semiclassical scattering analysis. Ann. Physics 7 (3), pp. 287–322.
  • 19: Bibliography B
  • L. P. Bayvel and A. R. Jones (1981) Electromagnetic Scattering and its Applications. Applied Science Publishers, London.
  • P. Beckmann and A. Spizzichino (1963) The Scattering of Electromagnetic Waves from Rough Surfaces. Pergamon Press, New York.
  • M. V. Berry (1966) Uniform approximation for potential scattering involving a rainbow. Proc. Phys. Soc. 89 (3), pp. 479–490.
  • M. V. Berry (1975) Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces. J. Phys. A 8 (4), pp. 566–584.
  • W. G. C. Boyd (1973) The asymptotic analysis of canonical problems in high-frequency scattering theory. II. The circular and parabolic cylinders. Proc. Cambridge Philos. Soc. 74, pp. 313–332.
  • 20: Bibliography C
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • J. N. L. Connor and D. C. Mackay (1979) Calculation of angular distributions in complex angular momentum theories of elastic scattering. Molecular Physics 37 (6), pp. 1703–1712.
  • F. Cooper, A. Khare, and U. Sukhatme (1995) Supersymmetry and quantum mechanics. Phys. Rep. 251, pp. 267–385.
  • H. Cornille and A. Martin (1972) Constraints on the phase of scattering amplitudes due to positivity. Nuclear Phys. B 49, pp. 413–440.
  • H. L. Cycon, R. G. Froese, W. Krisch, and B. Simon (2008) Schrödinger Operators, with Applications to Quantum Mechanics and Global Geometry. Springer Verlag, New York.