About the Project

quadrature

AdvancedHelp

(0.000 seconds)

21—30 of 36 matching pages

21: Bibliography R
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • J. Rys, M. Dupuis, and H. F. King (1983) Computation of electron repulsion integrals using the Rys quadrature method. J. Comput. Chem. 4 (2), pp. 154–175.
  • 22: Bibliography E
  • U. T. Ehrenmark (1995) The numerical inversion of two classes of Kontorovich-Lebedev transform by direct quadrature. J. Comput. Appl. Math. 61 (1), pp. 43–72.
  • 23: 18.39 Applications in the Physical Sciences
    For many applications the natural weight functions are non-classical, and thus the OP’s and the determination of the Gaussian quadrature points and weights represent a computational challenge. …
    Table 18.39.1: Typical Non-Classical Weight Functions Of Use In DVR Applicationsa
    Name of OP System w ( x ) [ a , b ] Notation Applications
    Multi-Exponential ln 2 x [ 0 , 1 ] M E x p n ( x ) Quadrature Sums of Exponentialsk
    Full expressions for both A x i , l and B l ( x ) are given in Yamani and Reinhardt (1975) and it is seen that | A x i , l / B l ( x i ) | 2 = w i N / w CP ( x i ) where w i N is the Gaussian-Pollaczek quadrature weight at x = x i , and w CP ( x i ) is the Gaussian-Pollaczek weight function at the same quadrature abscissa. This equivalent quadrature relationship, see Heller et al. (1973), Yamani and Reinhardt (1975), allows extraction of scattering information from the finite dimensional L 2 functions of (18.39.53), provided that such information involves potentials, or projections onto L 2 functions, exactly expressed, or well approximated, in the finite basis of (18.39.44). The equivalent quadrature weight, w i / w CP ( x i ) , also forms the foundation of a novel inversion of the Stieltjes–Perron moment inversion discussed in §18.40(ii). …
    24: 10.74 Methods of Computation
    For applications of generalized Gauss–Laguerre quadrature3.5(v)) to the evaluation of the modified Bessel functions K ν ( z ) for 0 < ν < 1 and 0 < x < see Gautschi (2002a). …
    25: 13.29 Methods of Computation
    Gauss quadrature methods are discussed in Gautschi (2002b). …
    26: 3.2 Linear Algebra
    Lanczos’ method is related to Gauss quadrature considered in §3.5(v). …
    27: Bibliography B
  • R. Barakat and E. Parshall (1996) Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy. Appl. Math. Lett. 9 (5), pp. 21–26.
  • F. L. Bauer, H. Rutishauser, and E. Stiefel (1963) New Aspects in Numerical Quadrature. In Proc. Sympos. Appl. Math., Vol. XV, pp. 199–218.
  • R. Bulirsch and H. Rutishauser (1968) Interpolation und genäherte Quadratur. In Mathematische Hilfsmittel des Ingenieurs. Teil III, R. Sauer and I. Szabó (Eds.), Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 141, pp. 232–319.
  • 28: Bibliography H
  • E. J. Heller, W. P. Reinhardt, and H. A. Yamani (1973) On an “equivalent quadrature” calculation of matrix elements of ( z p 2 / 2 m ) 1 using an L 2 expansion technique. J. Comput. Phys. 13, pp. 536–550.
  • 29: 18.36 Miscellaneous Polynomials
    EOP’s are non-classical in that not only are certain polynomial orders missing, but, also, not all EOP polynomial zeros are within the integration range of their generating measure, and EOP-orthogonality properties do not allow development of Gaussian-type quadratures. …
    30: Bibliography C
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • A. D. Chave (1983) Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48 (12), pp. 1671–1686.