About the Project

product representation

AdvancedHelp

(0.001 seconds)

41—50 of 57 matching pages

41: 16.8 Differential Equations
β–Ί
16.8.8 F q q + 1 ⁑ ( a 1 , , a q + 1 b 1 , , b q ; z ) = j = 1 q + 1 ( k = 1 k j q + 1 Ξ“ ⁑ ( a k a j ) Ξ“ ⁑ ( a k ) / k = 1 q Ξ“ ⁑ ( b k a j ) Ξ“ ⁑ ( b k ) ) ⁒ w ~ j ⁒ ( z ) , | ph ⁑ ( z ) | Ο€ .
β–Ί
16.8.9 ( k = 1 q + 1 Ξ“ ⁑ ( a k ) / k = 1 q Ξ“ ⁑ ( b k ) ) ⁒ F q q + 1 ⁑ ( a 1 , , a q + 1 b 1 , , b q ; z ) = j = 1 q + 1 ( z 0 z ) a j ⁒ n = 0 Ξ“ ⁑ ( a j + n ) n ! ⁒ ( k = 1 k j q + 1 Ξ“ ⁑ ( a k a j n ) / k = 1 q Ξ“ ⁑ ( b k a j n ) ) ⁒ F q q + 1 ⁑ ( a 1 a j n , , a q + 1 a j n b 1 a j n , , b q a j n ; z 0 ) ⁒ ( z z 0 ) n .
β–ΊIn this reference it is also explained that in general when q > 1 no simple representations in terms of generalized hypergeometric functions are available for the fundamental solutions near z = 1 . …
42: 3.3 Interpolation
β–Ί
β„“ k ⁒ ( z ) = j = 0 n ⁒ z z j z k z j ,
β–Ί
3.3.3 Ο‰ n + 1 ⁑ ( z ) = k = 0 n ( z z k ) ,
β–Ίand according to Berrut and Trefethen (2004) it is the most efficient representation of P n ⁑ ( z ) . … β–Ί
3.3.12 c n = 1 ( n + 1 ) ! ⁒ max ⁒ k = n 0 n 1 | t k | ,
β–ΊIf f is analytic in a simply-connected domain D , then for z D , …
43: Bibliography L
β–Ί
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.
  • β–Ί
  • Y. T. Li and R. Wong (2008) Integral and series representations of the Dirac delta function. Commun. Pure Appl. Anal. 7 (2), pp. 229–247.
  • β–Ί
  • J. C. Light and T. Carrington Jr. (2000) Discrete-variable representations and their utilization. In Advances in Chemical Physics, pp. 263–310.
  • β–Ί
  • J. L. López and N. M. Temme (1999b) Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. J. Math. Anal. Appl. 239 (2), pp. 457–477.
  • β–Ί
  • T. A. Lowdon (1970) Integral representation of the Hankel function in terms of parabolic cylinder functions. Quart. J. Mech. Appl. Math. 23 (3), pp. 315–327.
  • 44: 33.14 Definitions and Basic Properties
    β–Ί
    33.14.11 A ⁑ ( Ο΅ , β„“ ) = k = 0 β„“ ( 1 + Ο΅ ⁒ k 2 ) .
    β–ΊThe function s ⁑ ( Ο΅ , β„“ ; r ) has the following properties: …
    45: 18.20 Hahn Class: Explicit Representations
    §18.20 Hahn Class: Explicit Representations
    β–Ί
    18.20.1 p n ⁑ ( x ) = 1 ΞΊ n ⁒ w x ⁒ x n ( w x ⁒ β„“ = 0 n 1 F ⁑ ( x + β„“ ) ) , x X .
    46: Bibliography D
    β–Ί
  • A. Dienstfrey and J. Huang (2006) Integral representations for elliptic functions. J. Math. Anal. Appl. 316 (1), pp. 142–160.
  • β–Ί
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • β–Ί
  • R. McD. Dodds and G. Wiechers (1972) Vector coupling coefficients as products of prime factors. Comput. Phys. Comm. 4 (2), pp. 268–274.
  • β–Ί
  • L. Durand (1975) Nicholson-type Integrals for Products of Gegenbauer Functions and Related Topics. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), R. A. Askey (Ed.), pp. 353–374. Math. Res. Center, Univ. Wisconsin, Publ. No. 35.
  • β–Ί
  • L. Durand (1978) Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. SIAM J. Math. Anal. 9 (1), pp. 76–86.
  • 47: 24.4 Basic Properties
    β–Ί
    §24.4(iii) Sums of Powers
    β–Ί
    24.4.11 k = 1 ( k , m ) = 1 m k n = 1 n + 1 ⁒ j = 1 n + 1 ( n + 1 j ) ⁒ ( p | m ( 1 p n j ) ⁒ B n + 1 j ) ⁒ m j .
    48: 1.10 Functions of a Complex Variable
    β–Ί
    §1.10(ix) Infinite Products
    β–ΊThe convergence of the infinite product is uniform if the sequence of partial products converges uniformly. … β–Ί
    Weierstrass Product
    β–ΊMany properties are a direct consequence of this representation: Taking the x -derivative gives us …
    49: 18.28 Askey–Wilson Class
    β–Ί β–ΊIn the remainder of this section the Askey–Wilson class OP’s are defined by their q -hypergeometric representations, followed by their orthogonal properties. … β–Ί
    18.28.1 p n ⁑ ( x ) = p n ⁑ ( x ; a , b , c , d | q ) = a n ⁒ β„“ = 0 n q β„“ ⁒ ( a ⁒ b ⁒ q β„“ , a ⁒ c ⁒ q β„“ , a ⁒ d ⁒ q β„“ ; q ) n β„“ ⁒ ( q n , a ⁒ b ⁒ c ⁒ d ⁒ q n 1 ; q ) β„“ ( q ; q ) β„“ ⁒ j = 0 β„“ 1 ( 1 2 ⁒ a ⁒ q j ⁒ x + a 2 ⁒ q 2 ⁒ j ) ,
    β–Ί
    18.28.26 lim λ 0 r n ⁒ ( x / ( 2 ⁒ λ ) ; λ , q ⁒ a ⁒ λ 1 , q ⁒ c ⁒ λ 1 , b ⁒ c 1 ⁒ λ | q ) = P n ⁑ ( x ; a , b , c ; q ) .
    β–ΊGenest et al. (2016) showed that these polynomials coincide with the nonsymmetric Wilson polynomials in Groenevelt (2007).
    50: 25.2 Definition and Expansions
    β–Ί
    §25.2(iii) Representations by the Euler–Maclaurin Formula
    β–Ί
    §25.2(iv) Infinite Products
    β–Ί
    25.2.11 ΢ ⁑ ( s ) = p ( 1 p s ) 1 , ⁑ s > 1 ,
    β–Ίproduct over all primes p . …product over zeros ρ of ΞΆ with ⁑ ρ > 0 (see §25.10(i)); Ξ³ is Euler’s constant (§5.2(ii)).