About the Project

principal branch (or value)

AdvancedHelp

(0.002 seconds)

31—40 of 178 matching pages

31: 5.17 Barnes’ G -Function (Double Gamma Function)
β–Ί
5.17.4 Ln ⁑ G ⁑ ( z + 1 ) = 1 2 ⁒ z ⁒ ln ⁑ ( 2 ⁒ Ο€ ) 1 2 ⁒ z ⁒ ( z + 1 ) + z ⁒ Ln ⁑ Ξ“ ⁑ ( z + 1 ) 0 z Ln ⁑ Ξ“ ⁑ ( t + 1 ) ⁒ d t .
β–Ί
5.17.5 Ln ⁑ G ⁑ ( z + 1 ) 1 4 ⁒ z 2 + z ⁒ Ln ⁑ Ξ“ ⁑ ( z + 1 ) ( 1 2 ⁒ z ⁒ ( z + 1 ) + 1 12 ) ⁒ ln ⁑ z ln ⁑ A + k = 1 B 2 ⁒ k + 2 2 ⁒ k ⁒ ( 2 ⁒ k + 1 ) ⁒ ( 2 ⁒ k + 2 ) ⁒ z 2 ⁒ k .
β–Ί
5.17.7 C = lim n ( k = 1 n k ⁒ ln ⁑ k ( 1 2 ⁒ n 2 + 1 2 ⁒ n + 1 12 ) ⁒ ln ⁑ n + 1 4 ⁒ n 2 ) = Ξ³ + ln ⁑ ( 2 ⁒ Ο€ ) 12 ΞΆ ⁑ ( 2 ) 2 ⁒ Ο€ 2 = 1 12 ΞΆ ⁑ ( 1 ) ,
32: 4.7 Derivatives and Differential Equations
β–Ί
4.7.1 d d z ⁑ ln ⁑ z = 1 z ,
β–Ί
4.7.3 d n d z n ⁑ ln ⁑ z = ( 1 ) n 1 ⁒ ( n 1 ) ! ⁒ z n ,
β–Ί
4.7.9 d d z ⁑ a z = a z ⁒ ln ⁑ a , a 0 .
33: 4.19 Maclaurin Series and Laurent Series
β–Ί
4.19.7 ln ⁑ ( sin ⁑ z z ) = n = 1 ( 1 ) n ⁒ 2 2 ⁒ n 1 ⁒ B 2 ⁒ n n ⁒ ( 2 ⁒ n ) ! ⁒ z 2 ⁒ n , | z | < Ο€ ,
β–Ί
4.19.8 ln ⁑ ( cos ⁑ z ) = n = 1 ( 1 ) n ⁒ 2 2 ⁒ n 1 ⁒ ( 2 2 ⁒ n 1 ) ⁒ B 2 ⁒ n n ⁒ ( 2 ⁒ n ) ! ⁒ z 2 ⁒ n , | z | < 1 2 ⁒ Ο€ ,
β–Ί
4.19.9 ln ⁑ ( tan ⁑ z z ) = n = 1 ( 1 ) n 1 ⁒ 2 2 ⁒ n ⁒ ( 2 2 ⁒ n 1 1 ) ⁒ B 2 ⁒ n n ⁒ ( 2 ⁒ n ) ! ⁒ z 2 ⁒ n , | z | < 1 2 ⁒ Ο€ .
34: 10.25 Definitions
β–Ί
§10.25(ii) Standard Solutions
β–ΊIn particular, the principal branch of I Ξ½ ⁑ ( z ) is defined in a similar way: it corresponds to the principal value of ( 1 2 ⁒ z ) Ξ½ , is analytic in β„‚ βˆ– ( , 0 ] , and two-valued and discontinuous on the cut ph ⁑ z = ± Ο€ . … β–ΊThe principal branch corresponds to the principal value of the square root in (10.25.3), is analytic in β„‚ βˆ– ( , 0 ] , and two-valued and discontinuous on the cut ph ⁑ z = ± Ο€ . …
35: 7.17 Inverse Error Functions
β–Ί
7.17.5 u = 2 / ln ⁑ ( Ο€ ⁒ x 2 ⁒ ln ⁑ ( 1 / x ) ) ,
β–Ί
7.17.6 v = ln ⁑ ( ln ⁑ ( 1 / x ) ) 2 + ln ⁑ Ο€ .
36: 4.9 Continued Fractions
β–Ί
4.9.1 ln ⁑ ( 1 + z ) = z 1 + z 2 + z 3 + 4 ⁒ z 4 + 4 ⁒ z 5 + 9 ⁒ z 6 + 9 ⁒ z 7 + ⁒ β‹― , | ph ⁑ ( 1 + z ) | < Ο€ .
β–Ί
4.9.2 ln ⁑ ( 1 + z 1 z ) = 2 ⁒ z 1 z 2 3 4 ⁒ z 2 5 9 ⁒ z 2 7 16 ⁒ z 2 9 ⁒ β‹― ,
37: 10.8 Power Series
β–Ί
10.8.1 Y n ⁑ ( z ) = ( 1 2 ⁒ z ) n Ο€ ⁒ k = 0 n 1 ( n k 1 ) ! k ! ⁒ ( 1 4 ⁒ z 2 ) k + 2 Ο€ ⁒ ln ⁑ ( 1 2 ⁒ z ) ⁒ J n ⁑ ( z ) ( 1 2 ⁒ z ) n Ο€ ⁒ k = 0 ( ψ ⁑ ( k + 1 ) + ψ ⁑ ( n + k + 1 ) ) ⁒ ( 1 4 ⁒ z 2 ) k k ! ⁒ ( n + k ) ! ,
β–Ί
10.8.2 Y 0 ⁑ ( z ) = 2 Ο€ ⁒ ( ln ⁑ ( 1 2 ⁒ z ) + Ξ³ ) ⁒ J 0 ⁑ ( z ) + 2 Ο€ ⁒ ( 1 4 ⁒ z 2 ( 1 ! ) 2 ( 1 + 1 2 ) ⁒ ( 1 4 ⁒ z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ⁒ ( 1 4 ⁒ z 2 ) 3 ( 3 ! ) 2 β‹― ) ,
38: 4.23 Inverse Trigonometric Functions
β–ΊThe principal values (or principal branches) of the inverse sine, cosine, and tangent are obtained by introducing cuts in the z -plane as indicated in Figures 4.23.1(i) and 4.23.1(ii), and requiring the integration paths in (4.23.1)–(4.23.3) not to cross these cuts. …The principal branches are denoted by arcsin ⁑ z , arccos ⁑ z , arctan ⁑ z , respectively. … β–Ί
4.23.24 arccos ⁑ x = βˆ“ i ⁒ ln ⁑ ( ( x 2 1 ) 1 / 2 + x ) , x [ 1 , ) ,
β–Ί
4.23.25 arccos ⁑ x = Ο€ βˆ“ i ⁒ ln ⁑ ( ( x 2 1 ) 1 / 2 x ) , x ( , 1 ] ,
β–Ί
4.23.36 arctan ⁑ z = 1 2 ⁒ arctan ⁑ ( 2 ⁒ x 1 x 2 y 2 ) + 1 4 ⁒ i ⁒ ln ⁑ ( x 2 + ( y + 1 ) 2 x 2 + ( y 1 ) 2 ) ,
39: 5.9 Integral Representations
β–Ί
5.9.10 Ln ⁑ Ξ“ ⁑ ( z ) = ( z 1 2 ) ⁒ ln ⁑ z z + 1 2 ⁒ ln ⁑ ( 2 ⁒ Ο€ ) + 2 ⁒ 0 arctan ⁑ ( t / z ) e 2 ⁒ Ο€ ⁒ t 1 ⁒ d t ,
β–Ί
5.9.10_1 Ln ⁑ Ξ“ ⁑ ( z ) = ( z 1 2 ) ⁒ ln ⁑ z z + 1 2 ⁒ ln ⁑ ( 2 ⁒ Ο€ ) z Ο€ ⁒ 0 ln ⁑ ( 1 e 2 ⁒ Ο€ ⁒ t ) t 2 + z 2 ⁒ d t ,
β–Ί
5.9.11 Ln ⁑ Ξ“ ⁑ ( z + 1 ) = Ξ³ ⁒ z 1 2 ⁒ Ο€ ⁒ i ⁒ c ⁒ i c + ⁒ i Ο€ ⁒ z s s ⁒ sin ⁑ ( Ο€ ⁒ s ) ⁒ ΞΆ ⁑ ( s ) ⁒ d s ,
β–Ί
5.9.13 ψ ⁑ ( z ) = ln ⁑ z + 0 ( 1 t 1 1 e t ) ⁒ e t ⁒ z ⁒ d t ,
β–Ί
5.9.15 ψ ⁑ ( z ) = ln ⁑ z 1 2 ⁒ z 2 ⁒ 0 t ⁒ d t ( t 2 + z 2 ) ⁒ ( e 2 ⁒ Ο€ ⁒ t 1 ) .
40: 15.2 Definitions and Analytical Properties
β–Ίβ–Ίagain with analytic continuation for other values of z , and with the principal branch defined in a similar way. β–ΊExcept where indicated otherwise principal branches of F ⁑ ( a , b ; c ; z ) and 𝐅 ⁑ ( a , b ; c ; z ) are assumed throughout the DLMF. β–ΊThe difference between the principal branches on the two sides of the branch cut (§4.2(i)) is given by … β–ΊThe principal branch of 𝐅 ⁑ ( a , b ; c ; z ) is an entire function of a , b , and c . …