About the Project

primes

AdvancedHelp

(0.001 seconds)

21—30 of 323 matching pages

21: 22.5 Special Values
β–ΊTable 22.5.1 gives the value of each of the 12 Jacobian elliptic functions, together with its z -derivative (or at a pole, the residue), for values of z that are integer multiples of K ⁑ , i ⁒ K ⁑ . For example, at z = K ⁑ + i ⁒ K ⁑ , sn ⁑ ( z , k ) = 1 / k , d sn ⁑ ( z , k ) / d z = 0 . … β–ΊFor example, sn ⁑ ( 1 2 ⁒ K ⁑ , k ) = ( 1 + k ) 1 / 2 . … β–ΊExpansions for K ⁑ , K ⁑ as k 0 or 1 are given in §§19.5, 19.12. β–ΊFor values of K ⁑ , K ⁑ when k 2 = 1 2 (lemniscatic case) see §23.5(iii), and for k 2 = e i ⁒ Ο€ / 3 (equianharmonic case) see §23.5(v). …
22: 27.19 Methods of Computation: Factorization
β–ΊTechniques for factorization of integers fall into three general classes: Deterministic algorithms, Type I probabilistic algorithms whose expected running time depends on the size of the smallest prime factor, and Type II probabilistic algorithms whose expected running time depends on the size of the number to be factored. … β–ΊAs of January 2009 the largest prime factors found by these methods are a 19-digit prime for Brent–Pollard rho, a 58-digit prime for Pollard p 1 , and a 67-digit prime for ecm. …
23: 9.18 Tables
β–Ί
  • Zhang and Jin (1996, p. 337) tabulates Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) for x = 0 ⁒ ( 1 ) ⁒ 20 to 8S and for x = 20 ⁒ ( 1 ) ⁒ 0 to 9D.

  • β–Ί
  • Yakovleva (1969) tabulates Fock’s functions U ⁑ ( x ) Ο€ ⁒ Bi ⁑ ( x ) , U ⁑ ( x ) = Ο€ ⁒ Bi ⁑ ( x ) , V ⁑ ( x ) Ο€ ⁒ Ai ⁑ ( x ) , V ⁑ ( x ) = Ο€ ⁒ Ai ⁑ ( x ) for x = 9 ⁒ ( .001 ) ⁒ 9 . Precision is 7S.

  • β–Ί
  • Miller (1946) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 . Precision is 8D. Entries for k = 1 ⁒ ( 1 ) ⁒ 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • β–Ί
  • Sherry (1959) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; 20S.

  • β–Ί
  • Gil et al. (2003c) tabulates the only positive zero of Gi ⁑ ( z ) , the first 10 negative real zeros of Gi ⁑ ( z ) and Gi ⁑ ( z ) , and the first 10 complex zeros of Gi ⁑ ( z ) , Gi ⁑ ( z ) , Hi ⁑ ( z ) , and Hi ⁑ ( z ) . Precision is 11 or 12S.

  • 24: 9.19 Approximations
    β–Ί
  • Moshier (1989, §6.14) provides minimax rational approximations for calculating Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) . They are in terms of the variable ΞΆ , where ΞΆ = 2 3 ⁒ x 3 / 2 when x is positive, ΞΆ = 2 3 ⁒ ( x ) 3 / 2 when x is negative, and ΞΆ = 0 when x = 0 . The approximations apply when 2 ΞΆ < , that is, when 3 2 / 3 x < or < x 3 2 / 3 . The precision in the coefficients is 21S.

  • β–Ί
  • Prince (1975) covers Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) . The Chebyshev coefficients are given to 10-11D. Fortran programs are included. See also Razaz and Schonfelder (1981).

  • β–Ί
  • Németh (1992, Chapter 8) covers Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) , and integrals 0 x Ai ⁑ ( t ) ⁒ d t , 0 x Bi ⁑ ( t ) ⁒ d t , 0 x 0 v Ai ⁑ ( t ) ⁒ d t ⁒ d v , 0 x 0 v Bi ⁑ ( t ) ⁒ d t ⁒ d v (see also (9.10.20) and (9.10.21)). The Chebyshev coefficients are given to 15D. Chebyshev coefficients are also given for expansions of the second and higher (real) zeros of Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) , again to 15D.

  • β–Ί
  • Razaz and Schonfelder (1980) covers Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) . The Chebyshev coefficients are given to 30D.

  • β–Ί
  • Corless et al. (1992) describe a method of approximation based on subdividing β„‚ into a triangular mesh, with values of Ai ⁑ ( z ) , Ai ⁑ ( z ) stored at the nodes. Ai ⁑ ( z ) and Ai ⁑ ( z ) are then computed from Taylor-series expansions centered at one of the nearest nodes. The Taylor coefficients are generated by recursion, starting from the stored values of Ai ⁑ ( z ) , Ai ⁑ ( z ) at the node. Similarly for Bi ⁑ ( z ) , Bi ⁑ ( z ) .

  • 25: 22.6 Elementary Identities
    β–Ί
    22.6.3 k 2 ⁒ sc 2 ⁑ ( z , k ) + 1 = dc 2 ⁑ ( z , k ) = k 2 ⁒ nc 2 ⁑ ( z , k ) + k 2 ,
    β–Ί
    22.6.4 k 2 ⁒ k 2 ⁒ sd 2 ⁑ ( z , k ) = k 2 ⁒ ( cd 2 ⁑ ( z , k ) 1 ) = k 2 ⁒ ( 1 nd 2 ⁑ ( z , k ) ) .
    β–Ί
    22.6.8 cd ⁑ ( 2 ⁒ z , k ) = cd 2 ⁑ ( z , k ) k 2 ⁒ sd 2 ⁑ ( z , k ) ⁒ nd 2 ⁑ ( z , k ) 1 + k 2 ⁒ k 2 ⁒ sd 4 ⁑ ( z , k ) ,
    β–Ί
    22.6.20 cn 2 ⁑ ( 1 2 ⁒ z , k ) = k 2 + dn ⁑ ( z , k ) + k 2 ⁒ cn ⁑ ( z , k ) k 2 ⁒ ( 1 + cn ⁑ ( z , k ) ) = k 2 ⁒ ( 1 dn ⁑ ( z , k ) ) k 2 ⁒ ( dn ⁑ ( z , k ) cn ⁑ ( z , k ) ) = k 2 ⁒ ( 1 + cn ⁑ ( z , k ) ) k 2 + dn ⁑ ( z , k ) k 2 ⁒ cn ⁑ ( z , k ) ,
    β–Ί
    22.6.21 dn 2 ⁑ ( 1 2 ⁒ z , k ) = k 2 ⁒ cn ⁑ ( z , k ) + dn ⁑ ( z , k ) + k 2 1 + dn ⁑ ( z , k ) = k 2 ⁒ ( 1 cn ⁑ ( z , k ) ) dn ⁑ ( z , k ) cn ⁑ ( z , k ) = k 2 ⁒ ( 1 + dn ⁑ ( z , k ) ) k 2 + dn ⁑ ( z , k ) k 2 ⁒ cn ⁑ ( z , k ) .
    26: 22.10 Maclaurin Series
    β–ΊThe full expansions converge when | z | < min ⁑ ( K ⁑ ( k ) , K ⁑ ( k ) ) . β–Ί
    §22.10(ii) Maclaurin Series in k and k
    β–Ί
    22.10.7 sn ⁑ ( z , k ) = tanh ⁑ z k 2 4 ⁒ ( z sinh ⁑ z ⁒ cosh ⁑ z ) ⁒ sech 2 ⁑ z + O ⁑ ( k 4 ) ,
    β–ΊThe radius of convergence is the distance to the origin from the nearest pole in the complex k -plane in the case of (22.10.4)–(22.10.6), or complex k -plane in the case of (22.10.7)–(22.10.9); see §22.17.
    27: 22.13 Derivatives and Differential Equations
    β–Ί
    22.13.2 ( d d z ⁑ cn ⁑ ( z , k ) ) 2 = ( 1 cn 2 ⁑ ( z , k ) ) ⁒ ( k 2 + k 2 ⁒ cn 2 ⁑ ( z , k ) ) ,
    β–Ί
    22.13.17 d 2 d z 2 ⁑ sd ⁑ ( z , k ) = ( k 2 k 2 ) ⁒ sd ⁑ ( z , k ) 2 ⁒ k 2 ⁒ k 2 ⁒ sd 3 ⁑ ( z , k ) ,
    β–Ί
    22.13.18 d 2 d z 2 ⁑ nd ⁑ ( z , k ) = ( 1 + k 2 ) ⁒ nd ⁑ ( z , k ) 2 ⁒ k 2 ⁒ nd 3 ⁑ ( z , k ) ,
    β–Ί
    22.13.20 d 2 d z 2 ⁑ nc ⁑ ( z , k ) = ( k 2 k 2 ) ⁒ nc ⁑ ( z , k ) + 2 ⁒ k 2 ⁒ nc 3 ⁑ ( z , k ) ,
    β–Ί
    22.13.21 d 2 d z 2 ⁑ sc ⁑ ( z , k ) = ( 1 + k 2 ) ⁒ sc ⁑ ( z , k ) + 2 ⁒ k 2 ⁒ sc 3 ⁑ ( z , k ) ,
    28: 19.4 Derivatives and Differential Equations
    β–Ί
    d K ⁑ ( k ) d k = E ⁑ ( k ) k 2 ⁒ K ⁑ ( k ) k ⁒ k 2 ,
    β–Ί
    d ( E ⁑ ( k ) k 2 ⁒ K ⁑ ( k ) ) d k = k ⁒ K ⁑ ( k ) ,
    β–Ί
    d ( E ⁑ ( k ) K ⁑ ( k ) ) d k = k ⁒ E ⁑ ( k ) k 2 ,
    β–Ί
    19.4.3 d 2 E ⁑ ( k ) d k 2 = 1 k ⁒ d K ⁑ ( k ) d k = k 2 ⁒ K ⁑ ( k ) E ⁑ ( k ) k 2 ⁒ k 2 ,
    β–Ί
    19.4.5 F ⁑ ( Ο• , k ) k = E ⁑ ( Ο• , k ) k 2 ⁒ F ⁑ ( Ο• , k ) k ⁒ k 2 k ⁒ sin ⁑ Ο• ⁒ cos ⁑ Ο• k 2 ⁒ 1 k 2 ⁒ sin 2 ⁑ Ο• ,
    29: 22.1 Special Notation
    β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ί
    x , y real variables.
    k complementary modulus, k 2 + k 2 = 1 . If k [ 0 , 1 ] , then k [ 0 , 1 ] .
    K , K K ⁑ ( k ) , K ⁑ ( k ) = K ⁑ ( k ) (complete elliptic integrals of the first kind (§19.2(ii))).
    Ο„ i ⁒ K / K .
    β–ΊAll derivatives are denoted by differentials, not primes. …
    30: 25.1 Special Notation
    β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ί
    k , m , n nonnegative integers.
    p prime number.
    ψ ⁑ ( x ) digamma function Ξ“ ⁑ ( x ) / Ξ“ ⁑ ( x ) except in §25.16. See §5.2(i).
    primes on function symbols: derivatives with respect to argument.