About the Project

prime numbers

AdvancedHelp

(0.003 seconds)

31—40 of 106 matching pages

31: 24.20 Tables
Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
32: Bibliography V
  • I. M. Vinogradov (1937) Representation of an odd number as a sum of three primes (Russian). Dokl. Akad. Nauk SSSR 15, pp. 169–172 (Russian).
  • 33: Bibliography W
  • S. S. Wagstaff (2002) Prime Divisors of the Bernoulli and Euler Numbers. In Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 357–374.
  • 34: 24.15 Related Sequences of Numbers
    24.15.9 p B n n S ( p 1 + n , p 1 ) ( mod p 2 ) , 1 n p 2 ,
    24.15.10 2 n 1 4 n p 2 B 2 n S ( p + 2 n , p 1 ) ( mod p 3 ) , 2 2 n p 3 .
    35: 27.20 Methods of Computation: Other Number-Theoretic Functions
    §27.20 Methods of Computation: Other Number-Theoretic Functions
    To calculate a multiplicative function it suffices to determine its values at the prime powers and then use (27.3.2). For a completely multiplicative function we use the values at the primes together with (27.3.10). …
    36: 9.9 Zeros
    On the real line, Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) each have an infinite number of zeros, all of which are negative. … However, Bi ( z ) and Bi ( z ) each have an infinite number of complex zeros. …
    37: 26.10 Integer Partitions: Other Restrictions
    p ( 𝒟 3 , n ) denotes the number of partitions of n into parts with difference at least 3, except that multiples of 3 must differ by at least 6. …
    26.10.15 p ( 𝒟 3 , n ) = p ( A 1 , 6 , n ) .
    38: 26.18 Counting Techniques
    The number of positive integers N that are not divisible by any of the primes p 1 , p 2 , , p n 27.2(i)) is …
    39: 25.11 Hurwitz Zeta Function
    25.11.22 ζ ( 1 2 n , 1 2 ) = B 2 n ln 2 n 4 n ( 2 2 n 1 1 ) ζ ( 1 2 n ) 2 2 n 1 , n = 1 , 2 , 3 , .
    25.11.23 ζ ( 1 2 n , 1 3 ) = π ( 9 n 1 ) B 2 n 8 n 3 ( 3 2 n 1 1 ) B 2 n ln 3 4 n 3 2 n 1 ( 1 ) n ψ ( 2 n 1 ) ( 1 3 ) 2 3 ( 6 π ) 2 n 1 ( 3 2 n 1 1 ) ζ ( 1 2 n ) 2 3 2 n 1 , n = 1 , 2 , 3 , .
    25.11.32 0 a x n ψ ( x ) d x = ( 1 ) n 1 ζ ( n ) + ( 1 ) n H n B n + 1 n + 1 k = 0 n ( 1 ) k ( n k ) H k B k + 1 ( a ) k + 1 a n k + k = 0 n ( 1 ) k ( n k ) ζ ( k , a ) a n k , n = 1 , 2 , , a > 0 ,
    25.11.34 n 0 a ζ ( 1 n , x ) d x = ζ ( n , a ) ζ ( n ) + B n + 1 B n + 1 ( a ) n ( n + 1 ) , n = 1 , 2 , , a > 0 .
    25.11.44 ζ ( 1 , a ) 1 12 + 1 4 a 2 ( 1 12 1 2 a + 1 2 a 2 ) ln a k = 1 B 2 k + 2 ( 2 k + 2 ) ( 2 k + 1 ) 2 k a 2 k ,
    40: 20.14 Methods of Computation
    Then τ = 1 / τ = i π / ln ( 0.9 ) and q = e i π τ = exp ( π 2 / ln ( 0.9 ) ) = ( 2.07 ) × 10 41 . Hence the first term of the series (20.2.3) for θ 3 ( z τ | τ ) suffices for most purposes. In theory, starting from any value of τ , a finite number of applications of the transformations τ τ + 1 and τ 1 / τ will result in a value of τ with τ 3 / 2 ; see §23.18. …