About the Project

polar%20coordinates

AdvancedHelp

(0.001 seconds)

11—20 of 136 matching pages

11: 26.2 Basic Definitions
A k-dimensional lattice path is a directed path composed of segments that connect vertices in { 0 , 1 , 2 , } k so that each segment increases one coordinate by exactly one unit. …
Table 26.2.1: Partitions p ( n ) .
n p ( n ) n p ( n ) n p ( n )
3 3 20 627 37 21637
12: 14.31 Other Applications
§14.31(i) Toroidal Functions
§14.31(ii) Conical Functions
The conical functions 𝖯 1 2 + i τ m ( x ) appear in boundary-value problems for the Laplace equation in toroidal coordinates14.19(i)) for regions bounded by cones, by two intersecting spheres, or by one or two confocal hyperboloids of revolution (Kölbig (1981)). … Many additional physical applications of Legendre polynomials and associated Legendre functions include solution of the Helmholtz equation, as well as the Laplace equation, in spherical coordinates (Temme (1996b)), quantum mechanics (Edmonds (1974)), and high-frequency scattering by a sphere (Nussenzveig (1965)). …
13: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • L. Shen (1981) The elliptical microstrip antenna with circular polarization. IEEE Trans. Antennas and Propagation 29 (1), pp. 90–94.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 14: 28.27 Addition Theorems
    Addition theorems provide important connections between Mathieu functions with different parameters and in different coordinate systems. …
    15: 30.14 Wave Equation in Oblate Spheroidal Coordinates
    §30.14 Wave Equation in Oblate Spheroidal Coordinates
    §30.14(i) Oblate Spheroidal Coordinates
    Oblate spheroidal coordinates ξ , η , ϕ are related to Cartesian coordinates x , y , z by …
    §30.14(ii) Metric Coefficients
    §30.14(iii) Laplacian
    16: 13.28 Physical Applications
    §13.28(i) Exact Solutions of the Wave Equation
    The reduced wave equation 2 w = k 2 w in paraboloidal coordinates, x = 2 ξ η cos ϕ , y = 2 ξ η sin ϕ , z = ξ η , can be solved via separation of variables w = f 1 ( ξ ) f 2 ( η ) e i p ϕ , where …
    17: 23.21 Physical Applications
    §23.21(iii) Ellipsoidal Coordinates
    Ellipsoidal coordinates ( ξ , η , ζ ) may be defined as the three roots ρ of the equation …where x , y , z are the corresponding Cartesian coordinates and e 1 , e 2 , e 3 are constants. The Laplacian operator 2 1.5(ii)) is given by
    23.21.2 ( η ζ ) ( ζ ξ ) ( ξ η ) 2 = ( ζ η ) f ( ξ ) f ( ξ ) ξ + ( ξ ζ ) f ( η ) f ( η ) η + ( η ξ ) f ( ζ ) f ( ζ ) ζ ,
    18: 30.13 Wave Equation in Prolate Spheroidal Coordinates
    §30.13 Wave Equation in Prolate Spheroidal Coordinates
    §30.13(i) Prolate Spheroidal Coordinates
    §30.13(ii) Metric Coefficients
    §30.13(iii) Laplacian
    19: 10.73 Physical Applications
    In cylindrical coordinates r , ϕ , z , (§1.5(ii) we have … See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). … On separation of variables into cylindrical coordinates, the Bessel functions J n ( x ) , and modified Bessel functions I n ( x ) and K n ( x ) , all appear. … The functions 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗁 n ( 1 ) ( x ) , and 𝗁 n ( 2 ) ( x ) arise in the solution (again by separation of variables) of the Helmholtz equation in spherical coordinates ρ , θ , ϕ 1.5(ii)): …
    20: 1.15 Summability Methods
    A ( r , θ ) is a harmonic function in polar coordinates (1.9.27), and …