About the Project

parts

AdvancedHelp

(0.001 seconds)

31—40 of 305 matching pages

31: 25.2 Definition and Expansions
When s > 1 , …
25.2.2 ζ ( s ) = 1 1 2 s n = 0 1 ( 2 n + 1 ) s , s > 1 .
25.2.6 ζ ( s ) = n = 2 ( ln n ) n s , s > 1 .
25.2.11 ζ ( s ) = p ( 1 p s ) 1 , s > 1 ,
product over zeros ρ of ζ with ρ > 0 (see §25.10(i)); γ is Euler’s constant (§5.2(ii)).
32: 13.23 Integrals
13.23.1 0 e z t t ν 1 M κ , μ ( t ) d t = Γ ( μ + ν + 1 2 ) ( z + 1 2 ) μ + ν + 1 2 F 1 2 ( 1 2 + μ κ , 1 2 + μ + ν 1 + 2 μ ; 1 z + 1 2 ) , μ + ν + 1 2 > 0 , z > 1 2 .
13.23.2 0 e z t t μ 1 2 M κ , μ ( t ) d t = Γ ( 2 μ + 1 ) ( z + 1 2 ) κ μ 1 2 ( z 1 2 ) κ μ 1 2 , μ > 1 2 , z > 1 2 ,
13.23.3 1 Γ ( 1 + 2 μ ) 0 e 1 2 t t ν 1 M κ , μ ( t ) d t = Γ ( μ + ν + 1 2 ) Γ ( κ ν ) Γ ( 1 2 + μ + κ ) Γ ( 1 2 + μ ν ) , 1 2 μ < ν < κ .
13.23.5 0 e 1 2 t t ν 1 W κ , μ ( t ) d t = Γ ( 1 2 + μ + ν ) Γ ( 1 2 μ + ν ) Γ ( κ ν ) Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) , | μ | 1 2 < ν < κ .
Then for μ in the half-plane μ μ 1 > max ( ρ 0 , κ 1 2 )
33: 4.6 Power Series
4.6.2 ln z = ( z 1 z ) + 1 2 ( z 1 z ) 2 + 1 3 ( z 1 z ) 3 + , z 1 2 ,
4.6.4 ln z = 2 ( ( z 1 z + 1 ) + 1 3 ( z 1 z + 1 ) 3 + 1 5 ( z 1 z + 1 ) 5 + ) , z 0 , z 0 ,
4.6.6 ln ( z + a ) = ln a + 2 ( ( z 2 a + z ) + 1 3 ( z 2 a + z ) 3 + 1 5 ( z 2 a + z ) 5 + ) , a > 0 , z a , z a .
34: 6.14 Integrals
6.14.1 0 e a t E 1 ( t ) d t = 1 a ln ( 1 + a ) , a > 1 ,
6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
6.14.3 0 e a t si ( t ) d t = 1 a arctan a , a > 0 .
35: 12.12 Integrals
12.12.1 0 e 1 4 t 2 t μ 1 U ( a , t ) d t = π 2 1 2 ( μ + a + 1 2 ) Γ ( μ ) Γ ( 1 2 ( μ + a + 3 2 ) ) , μ > 0 ,
12.12.2 0 e 3 4 t 2 t a 3 2 U ( a , t ) d t = 2 1 4 + 1 2 a Γ ( a 1 2 ) cos ( ( 1 4 a + 1 8 ) π ) , a < 1 2 ,
12.12.3 0 e 1 4 t 2 t a 1 2 ( x 2 + t 2 ) 1 U ( a , t ) d t = π / 2 Γ ( 1 2 a ) x a 3 2 e 1 4 x 2 U ( a , x ) , a < 1 2 , x > 0 .
12.12.4 ( U ( a , z ) ) 2 + ( U ¯ ( a , z ) ) 2 = 2 3 2 π Γ ( 1 2 a ) 0 e 2 a t + 1 2 z 2 tanh t sinh ( 2 t ) d t , a < 1 2 .
36: 10.22 Integrals
When μ > 1 When μ > 0 , … When ν > μ > 1 , … When μ > 0 , … If ν > 1 2 , then …
37: 13.16 Integral Representations
13.16.1 M κ , μ ( z ) = Γ ( 1 + 2 μ ) z μ + 1 2 2 2 μ Γ ( 1 2 + μ κ ) Γ ( 1 2 + μ + κ ) 1 1 e 1 2 z t ( 1 + t ) μ 1 2 κ ( 1 t ) μ 1 2 + κ d t , μ + 1 2 > | κ | ,
13.16.2 M κ , μ ( z ) = Γ ( 1 + 2 μ ) z λ Γ ( 1 + 2 μ 2 λ ) Γ ( 2 λ ) 0 1 M κ λ , μ λ ( z t ) e 1 2 z ( t 1 ) t μ λ 1 2 ( 1 t ) 2 λ 1 d t , μ + 1 2 > λ > 0 ,
13.16.3 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = z e 1 2 z Γ ( 1 2 + μ + κ ) 0 e t t κ 1 2 J 2 μ ( 2 z t ) d t , ( κ + μ ) + 1 2 > 0 ,
13.16.4 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = z e 1 2 z Γ ( 1 2 + μ κ ) 0 e t t κ 1 2 I 2 μ ( 2 z t ) d t , ( κ μ ) 1 2 < 0 .
where c is arbitrary, c > 0 . …
38: 5 Gamma Function
39: 9 Airy and Related Functions
40: 11 Struve and Related Functions