About the Project

partial%20differentiation

AdvancedHelp

(0.001 seconds)

21—30 of 233 matching pages

21: 1.6 Vectors and Vector-Valued Functions
β–Ί
1.6.19 = 𝐒 ⁒ x + 𝐣 ⁒ y + 𝐀 ⁒ z .
β–Ί
1.6.20 grad ⁑ f = f = f x ⁒ 𝐒 + f y ⁒ 𝐣 + f z ⁒ 𝐀 .
β–Ί
1.6.22 curl ⁑ 𝐅 = × π… = | 𝐒 𝐣 𝐀 x y z F 1 F 2 F 3 | = ( F 3 y F 2 z ) ⁒ 𝐒 + ( F 1 z F 3 x ) ⁒ 𝐣 + ( F 2 x F 1 y ) ⁒ 𝐀 .
β–ΊSuppose S is an oriented surface with boundary S which is oriented so that its direction is clockwise relative to the normals of S . … β–Ίwhere g / n = g 𝐧 is the derivative of g normal to the surface outwards from V and 𝐧 is the unit outer normal vector. …
22: 5.19 Mathematical Applications
β–ΊBy decomposition into partial fractions (§1.2(iii)) …
23: 1.10 Functions of a Complex Variable
β–ΊLet D be a bounded domain with boundary D and let D ¯ = D D . … β–Ίβ–ΊThe convergence of the infinite product is uniform if the sequence of partial products converges uniformly. … β–Ί
§1.10(x) Infinite Partial Fractions
β–Ί
Mittag-Leffler’s Expansion
24: 30.13 Wave Equation in Prolate Spheroidal Coordinates
β–Ί
30.13.3 h ξ 2 = ( x ξ ) 2 + ( y ξ ) 2 + ( z ξ ) 2 = c 2 ⁒ ( ξ 2 η 2 ) ξ 2 1 ,
β–Ί β–Ί β–Ί
30.13.6 2 = 1 h ΞΎ ⁒ h Ξ· ⁒ h Ο• ⁒ ( ΞΎ ⁑ ( h Ξ· ⁒ h Ο• h ΞΎ ⁒ ΞΎ ) + Ξ· ⁑ ( h ΞΎ ⁒ h Ο• h Ξ· ⁒ Ξ· ) + Ο• ⁑ ( h ΞΎ ⁒ h Ξ· h Ο• ⁒ Ο• ) ) = 1 c 2 ⁒ ( ΞΎ 2 Ξ· 2 ) ⁒ ( ΞΎ ⁑ ( ( ΞΎ 2 1 ) ⁒ ΞΎ ) + Ξ· ⁑ ( ( 1 Ξ· 2 ) ⁒ Ξ· ) + ΞΎ 2 Ξ· 2 ( ΞΎ 2 1 ) ⁒ ( 1 Ξ· 2 ) ⁒ 2 Ο• 2 ) .
25: 31.10 Integral Equations and Representations
β–Ίand the kernel 𝒦 ⁑ ( z , t ) is a solution of the partial differential equation … β–Ί
31.10.4 π’Ÿ z = z ⁒ ( z 1 ) ⁒ ( z a ) ⁒ ( 2 / z 2 ) + ( Ξ³ ⁒ ( z 1 ) ⁒ ( z a ) + Ξ΄ ⁒ z ⁒ ( z a ) + Ο΅ ⁒ z ⁒ ( z 1 ) ) ⁒ ( / z ) + Ξ± ⁒ Ξ² ⁒ z .
β–Ί
31.10.8 sin 2 ⁑ ΞΈ ⁒ ( 2 𝒦 ΞΈ 2 + ( ( 1 2 ⁒ Ξ³ ) ⁒ tan ⁑ ΞΈ + 2 ⁒ ( Ξ΄ + Ο΅ 1 2 ) ⁒ cot ⁑ ΞΈ ) ⁒ 𝒦 ΞΈ 4 ⁒ Ξ± ⁒ Ξ² ⁒ 𝒦 ) + 2 𝒦 Ο• 2 + ( ( 1 2 ⁒ Ξ΄ ) ⁒ cot ⁑ Ο• ( 1 2 ⁒ Ο΅ ) ⁒ tan ⁑ Ο• ) ⁒ 𝒦 Ο• = 0 .
β–Ίand the kernel 𝒦 ⁑ ( z ; s , t ) is a solution of the partial differential equation … β–Ί
31.10.18 2 𝒦 u 2 + 2 𝒦 v 2 + 2 𝒦 w 2 + 2 ⁒ Ξ³ 1 u ⁒ 𝒦 u + 2 ⁒ Ξ΄ 1 v ⁒ 𝒦 v + 2 ⁒ Ο΅ 1 w ⁒ 𝒦 w = 0 .
26: 14.11 Derivatives with Respect to Degree or Order
β–Ί
14.11.1 Ξ½ ⁑ 𝖯 Ξ½ ΞΌ ⁑ ( x ) = Ο€ ⁒ cot ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ 𝖯 Ξ½ ΞΌ ⁑ ( x ) 1 Ο€ ⁒ 𝖠 Ξ½ ΞΌ ⁑ ( x ) ,
β–Ί
14.11.2 Ξ½ ⁑ 𝖰 Ξ½ ΞΌ ⁑ ( x ) = 1 2 ⁒ Ο€ 2 ⁒ 𝖯 Ξ½ ΞΌ ⁑ ( x ) + Ο€ ⁒ sin ⁑ ( ΞΌ ⁒ Ο€ ) sin ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ sin ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖰 Ξ½ ΞΌ ⁑ ( x ) 1 2 ⁒ cot ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖠 Ξ½ ΞΌ ⁑ ( x ) + 1 2 ⁒ csc ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖠 Ξ½ ΞΌ ⁑ ( x ) ,
β–Ί β–Ί
27: 10.40 Asymptotic Expansions for Large Argument
β–ΊCorresponding expansions for I Ξ½ ⁑ ( z ) , K Ξ½ ⁑ ( z ) , I Ξ½ ⁑ ( z ) , and K Ξ½ ⁑ ( z ) for other ranges of ph ⁑ z are obtainable by combining (10.34.3), (10.34.4), (10.34.6), and their differentiated forms, with (10.40.2) and (10.40.4). … β–Ί
28: 36.12 Uniform Approximation of Integrals
β–ΊAlso, f is real analytic, and K + 2 f / u K + 2 > 0 for all 𝐲 such that all K + 1 critical points coincide. If K + 2 f / u K + 2 < 0 , then we may evaluate the complex conjugate of I for real values of 𝐲 and g , and obtain I by conjugation and analytic continuation. … β–Ί
36.12.2 u ⁑ f ⁑ ( u j ⁑ ( 𝐲 ) ; 𝐲 ) = 0 .
β–Ί
36.12.10 G n ⁑ ( 𝐲 ) = g ⁑ ( t n ⁑ ( 𝐲 ) , 𝐲 ) ⁒ 2 Φ K ⁑ ( t n ⁑ ( 𝐱 ⁑ ( 𝐲 ) ) ; 𝐱 ⁑ ( 𝐲 ) ) / t 2 2 f ⁑ ( u n ⁑ ( 𝐲 ) ) / u 2 .
β–Ί
f ± ′′ = 2 u 2 ⁑ f ⁑ ( u ± ⁑ ( y ) , y ) ,
29: 25.11 Hurwitz Zeta Function
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 25.11.1: Hurwitz zeta function ΞΆ ⁑ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
β–Ί
25.11.17 a ⁑ ΢ ⁑ ( s , a ) = s ⁒ ΢ ⁑ ( s + 1 , a ) , s 0 , 1 ; ⁑ a > 0 .
β–Ί
25.11.24 r = 1 k 1 ΢ ⁑ ( s , r k ) = ( k s 1 ) ⁒ ΢ ⁑ ( s ) + k s ⁒ ΢ ⁑ ( s ) ⁒ ln ⁑ k , s 1 , k = 1 , 2 , 3 , .
30: 20 Theta Functions
Chapter 20 Theta Functions