About the Project

parametrization via Jacobian elliptic functions

AdvancedHelp

(0.004 seconds)

1—10 of 965 matching pages

1: 22.15 Inverse Functions
§22.15 Inverse Functions
§22.15(i) Definitions
The principal values satisfy …
§22.15(ii) Representations as Elliptic Integrals
2: 22.2 Definitions
§22.2 Definitions
As a function of z , with fixed k , each of the 12 Jacobian elliptic functions is doubly periodic, having two periods whose ratio is not real. … … The Jacobian functions are related in the following way. … s s ( z , k ) = 1 . …
3: 23.2 Definitions and Periodic Properties
§23.2(i) Lattices
§23.2(ii) Weierstrass Elliptic Functions
§23.2(iii) Periodicity
4: 19.16 Definitions
§19.16(i) Symmetric Integrals
§19.16(ii) R a ( 𝐛 ; 𝐳 )
All elliptic integrals of the form (19.2.3) and many multiple integrals, including (19.23.6) and (19.23.6_5), are special cases of a multivariate hypergeometric function …The R -function is often used to make a unified statement of a property of several elliptic integrals. …
§19.16(iii) Various Cases of R a ( 𝐛 ; 𝐳 )
5: 5.2 Definitions
§5.2(i) Gamma and Psi Functions
Euler’s Integral
It is a meromorphic function with no zeros, and with simple poles of residue ( 1 ) n / n ! at z = n . …
5.2.2 ψ ( z ) = Γ ( z ) / Γ ( z ) , z 0 , 1 , 2 , .
Pochhammer symbols (rising factorials) ( x ) n = x ( x + 1 ) ( x + n 1 ) and falling factorials ( 1 ) n ( x ) n = x ( x 1 ) ( x n + 1 ) can be expressed in terms of each other via
6: 5.12 Beta Function
§5.12 Beta Function
Euler’s Beta Integral
In (5.12.8) the fractional powers have their principal values when w > 0 and z > 0 , and are continued via continuity. …
See accompanying text
Figure 5.12.1: t -plane. Contour for first loop integral for the beta function. Magnify
Pochhammer’s Integral
7: 23.15 Definitions
§23.15 Definitions
§23.15(i) General Modular Functions
Elliptic Modular Function
Dedekind’s Eta Function (or Dedekind Modular Function)
8: 14.20 Conical (or Mehler) Functions
§14.20 Conical (or Mehler) Functions
§14.20(i) Definitions and Wronskians
§14.20(ii) Graphics
Approximations for 𝖯 1 2 + i τ μ ( x ) and 𝖰 ^ 1 2 + i τ μ ( x ) can then be achieved via (14.9.7) and (14.20.3). …
9: 9.1 Special Notation
(For other notation see Notation for the Special Functions.)
k nonnegative integer, except in §9.9(iii).
The main functions treated in this chapter are the Airy functions Ai ( z ) and Bi ( z ) , and the Scorer functions Gi ( z ) and Hi ( z ) (also known as inhomogeneous Airy functions). Other notations that have been used are as follows: Ai ( x ) and Bi ( x ) for Ai ( x ) and Bi ( x ) (Jeffreys (1928), later changed to Ai ( x ) and Bi ( x ) ); U ( x ) = π Bi ( x ) , V ( x ) = π Ai ( x ) (Fock (1945)); A ( x ) = 3 1 / 3 π Ai ( 3 1 / 3 x ) (Szegő (1967, §1.81)); e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) = π Gi ( x ) (Tumarkin (1959)).
10: 31.1 Special Notation
(For other notation see Notation for the Special Functions.)
x , y real variables.
The main functions treated in this chapter are H ( a , q ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ν ( a , q m ; α , β , γ , δ ; z ) , and the polynomial 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) . …Sometimes the parameters are suppressed.