parametrization via Jacobian elliptic functions
(0.004 seconds)
1—10 of 965 matching pages
1: 22.15 Inverse Functions
§22.15 Inverse Functions
►§22.15(i) Definitions
… ►The principal values satisfy … ►§22.15(ii) Representations as Elliptic Integrals
… ►2: 22.2 Definitions
§22.2 Definitions
… ►As a function of , with fixed , each of the 12 Jacobian elliptic functions is doubly periodic, having two periods whose ratio is not real. … … ►The Jacobian functions are related in the following way. …. …3: 23.2 Definitions and Periodic Properties
…
►
§23.2(i) Lattices
… ► … ►§23.2(ii) Weierstrass Elliptic Functions
… ► ►§23.2(iii) Periodicity
…4: 19.16 Definitions
…
►
§19.16(i) Symmetric Integrals
… ►§19.16(ii)
►All elliptic integrals of the form (19.2.3) and many multiple integrals, including (19.23.6) and (19.23.6_5), are special cases of a multivariate hypergeometric function …The -function is often used to make a unified statement of a property of several elliptic integrals. … ►§19.16(iii) Various Cases of
…5: 5.2 Definitions
…
►
§5.2(i) Gamma and Psi Functions
►Euler’s Integral
… ►It is a meromorphic function with no zeros, and with simple poles of residue at . … ►
5.2.2
.
…
►Pochhammer symbols (rising factorials) and falling factorials can be expressed in terms of each other via
…
6: 5.12 Beta Function
§5.12 Beta Function
… ►Euler’s Beta Integral
… ►In (5.12.8) the fractional powers have their principal values when and , and are continued via continuity. … ► … ►Pochhammer’s Integral
…7: 23.15 Definitions
§23.15 Definitions
►§23.15(i) General Modular Functions
… ►Elliptic Modular Function
… ►Dedekind’s Eta Function (or Dedekind Modular Function)
… ►8: 14.20 Conical (or Mehler) Functions
§14.20 Conical (or Mehler) Functions
►§14.20(i) Definitions and Wronskians
… ► … ►§14.20(ii) Graphics
… ►Approximations for and can then be achieved via (14.9.7) and (14.20.3). …9: 9.1 Special Notation
…
►(For other notation see Notation for the Special Functions.)
►
►
►The main functions treated in this chapter are the Airy functions
and , and the Scorer functions
and (also known as inhomogeneous Airy functions).
►Other notations that have been used are as follows: and for and (Jeffreys (1928), later changed to and ); , (Fock (1945)); (Szegő (1967, §1.81)); , (Tumarkin (1959)).
nonnegative integer, except in §9.9(iii). | |
… |