About the Project

parabolic cylinder functions

AdvancedHelp

(0.009 seconds)

41—50 of 60 matching pages

41: Bibliography F
  • M. Faierman (1992) Generalized parabolic cylinder functions. Asymptotic Anal. 5 (6), pp. 517–531.
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • 42: 13.8 Asymptotic Approximations for Large Parameters
    13.8.4 M ( a , b , z ) b 1 2 a e 1 4 ζ 2 b ( λ ( λ 1 ζ ) a 1 U ( a 1 2 , ζ b ) + ( λ ( λ 1 ζ ) a 1 ( ζ λ 1 ) a ) U ( a 3 2 , ζ b ) ζ b )
    13.8.5 U ( a , b , z ) b 1 2 a e 1 4 ζ 2 b ( λ ( λ 1 ζ ) a 1 U ( a 1 2 , ζ b ) ( λ ( λ 1 ζ ) a 1 ( ζ λ 1 ) a ) U ( a 3 2 , ζ b ) ζ b )
    For the parabolic cylinder function U see §12.2, and for an extension to an asymptotic expansion see Temme (1978). …
    43: Bibliography J
  • D. S. Jones (2006) Parabolic cylinder functions of large order. J. Comput. Appl. Math. 190 (1-2), pp. 453–469.
  • 44: Bibliography V
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • 45: 18.30 Associated OP’s
    18.30.15 w ( x , c ) = | U ( c 1 2 , i x 2 ) | 2 .
    For the parabolic cylinder function U see §12.2(i). …
    46: Software Index
    47: 18.15 Asymptotic Approximations
    With μ = 2 n + 1 the expansions in Chapter 12 are for the parabolic cylinder function U ( 1 2 μ 2 , μ t 2 ) , which is related to the Hermite polynomials via
    18.15.28 H n ( x ) = 2 1 4 ( μ 2 1 ) e 1 2 μ 2 t 2 U ( 1 2 μ 2 , μ t 2 ) ;
    48: Bibliography L
  • N. L. Lepe (1985) Functions on a parabolic cylinder with a negative integer index. Differ. Uravn. 21 (11), pp. 2001–2003, 2024 (Russian).
  • T. A. Lowdon (1970) Integral representation of the Hankel function in terms of parabolic cylinder functions. Quart. J. Mech. Appl. Math. 23 (3), pp. 315–327.
  • 49: Bibliography B
  • G. E. Barr (1968) A note on integrals involving parabolic cylinder functions. SIAM J. Appl. Math. 16 (1), pp. 71–74.
  • N. Brazel, F. Lawless, and A. Wood (1992) Exponential asymptotics for an eigenvalue of a problem involving parabolic cylinder functions. Proc. Amer. Math. Soc. 114 (4), pp. 1025–1032.
  • 50: 2.8 Differential Equations with a Parameter
    For two coalescing turning points see Olver (1975a, 1976) and Dunster (1996a); in this case the uniform approximants are parabolic cylinder functions. (For envelope functions for parabolic cylinder functions see §14.15(v)). … For further examples of uniform asymptotic approximations in terms of parabolic cylinder functions see §§13.20(iii), 13.20(iv), 14.15(v), 15.12(iii), 18.24. …