About the Project

other notations

AdvancedHelp

(0.001 seconds)

1—10 of 151 matching pages

1: 32.1 Special Notation
(For other notation see Notation for the Special Functions.) …
2: 6.1 Special Notation
(For other notation see Notation for the Special Functions.) …
3: 9.1 Special Notation
(For other notation see Notation for the Special Functions.) … Other notations that have been used are as follows: Ai ( x ) and Bi ( x ) for Ai ( x ) and Bi ( x ) (Jeffreys (1928), later changed to Ai ( x ) and Bi ( x ) ); U ( x ) = π Bi ( x ) , V ( x ) = π Ai ( x ) (Fock (1945)); A ( x ) = 3 1 / 3 π Ai ( 3 1 / 3 x ) (Szegő (1967, §1.81)); e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) = π Gi ( x ) (Tumarkin (1959)).
4: 13.1 Special Notation
(For other notation see Notation for the Special Functions.) … Other notations are: F 1 1 ( a ; b ; z ) 16.2(i)) and Φ ( a ; b ; z ) (Humbert (1920)) for M ( a , b , z ) ; Ψ ( a ; b ; z ) (Erdélyi et al. (1953a, §6.5)) for U ( a , b , z ) ; V ( b a , b , z ) (Olver (1997b, p. 256)) for e z U ( a , b , z ) ; Γ ( 1 + 2 μ ) κ , μ (Buchholz (1969, p. 12)) for M κ , μ ( z ) . …
5: 30.1 Special Notation
(For other notation see Notation for the Special Functions.) …
Other Notations
6: 26.1 Special Notation
(For other notation see Notation for the Special Functions.) … Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). Other notations for S ( n , k ) , the Stirling numbers of the second kind, include 𝒮 n ( k ) (Fort (1948)), 𝔖 n k (Jordan (1939)), σ n k (Moser and Wyman (1958b)), ( n k ) B n k ( k ) (Milne-Thomson (1933)), S 2 ( k , n k ) (Carlitz (1960), Gould (1960)), { n k } (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
7: 25.1 Special Notation
(For other notation see Notation for the Special Functions.) …
8: 12.1 Special Notation
(For other notation see Notation for the Special Functions.) …
9: 36.1 Special Notation
(For other notation see Notation for the Special Functions.) …
10: 27.1 Special Notation
(For other notation see Notation for the Special Functions.) …