About the Project

order amiodarone on line no prescription DruGs-365.com/?id=1738

AdvancedHelp

Did you mean order amilcare on line no prescription runs-365.comp/?id=1738 ?

(0.064 seconds)

1—10 of 337 matching pages

1: 28.12 Definitions and Basic Properties
The introduction to the eigenvalues and the functions of general order proceeds as in §§28.2(i), 28.2(ii), and 28.2(iii), except that we now restrict ν ^ 0 , 1 ; equivalently ν n . …
§28.12(ii) Eigenfunctions me ν ( z , q )
For q = 0 , …
2: 28.2 Definitions and Basic Properties
§28.2(vi) Eigenfunctions
3: 34.11 Higher-Order 3 n j Symbols
§34.11 Higher-Order 3 n j Symbols
4: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995a) Hyperasymptotic solutions of second-order linear differential equations. I. Methods Appl. Anal. 2 (2), pp. 173–197.
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • A. B. Olde Daalhuis (1995) Hyperasymptotic solutions of second-order linear differential equations. II. Methods Appl. Anal. 2 (2), pp. 198–211.
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • F. W. J. Olver (1977c) Second-order differential equations with fractional transition points. Trans. Amer. Math. Soc. 226, pp. 227–241.
  • 5: 10.24 Functions of Imaginary Order
    §10.24 Functions of Imaginary Order
    and J ~ ν ( x ) , Y ~ ν ( x ) are linearly independent solutions of (10.24.1): … In consequence of (10.24.6), when x is large J ~ ν ( x ) and Y ~ ν ( x ) comprise a numerically satisfactory pair of solutions of (10.24.1); compare §2.7(iv). … …
    6: 10.45 Functions of Imaginary Order
    §10.45 Functions of Imaginary Order
    and I ~ ν ( x ) , K ~ ν ( x ) are real and linearly independent solutions of (10.45.1): … The corresponding result for K ~ ν ( x ) is given by …
    7: 2.1 Definitions and Elementary Properties
    §2.1(i) Asymptotic and Order Symbols
    As x c in 𝐗
    2.1.5 e x = o ( 1 ) , x + in .
    §2.1(ii) Integration and Differentiation
    Integration of asymptotic and order relations is permissible, subject to obvious convergence conditions. …
    8: 10.26 Graphics
    §10.26(i) Real Order and Variable
    §10.26(ii) Real Order, Complex Variable
    §10.26(iii) Imaginary Order, Real Variable
    See accompanying text
    Figure 10.26.7: I ~ 1 / 2 ( x ) , K ~ 1 / 2 ( x ) , 0.01 x 3 . Magnify
    See accompanying text
    Figure 10.26.8: I ~ 1 ( x ) , K ~ 1 ( x ) , 0.01 x 3 . Magnify
    9: 36.11 Leading-Order Asymptotics
    §36.11 Leading-Order Asymptotics
    With real critical points (36.4.1) ordered so that …
    Asymptotics along Symmetry Lines
    36.11.5 Ψ 3 ( 0 , y , 0 ) = Ψ 3 ( 0 , y , 0 ) ¯ = exp ( 1 4 i π ) π / y ( 1 ( i / 3 ) exp ( 3 2 i ( 2 y / 5 ) 5 / 3 ) + o ( 1 ) ) , y + .
    36.11.7 Ψ ( E ) ( 0 , 0 , z ) = π z ( i + 3 exp ( 4 27 i z 3 ) + o ( 1 ) ) , z ± ,
    10: 25.10 Zeros
    §25.10(i) Distribution
    The Riemann hypothesis states that all nontrivial zeros lie on this line. … Calculations relating to the zeros on the critical line make use of the real-valued function … Calculations based on the Riemann–Siegel formula reveal that the first ten billion zeros of ζ ( s ) in the critical strip are on the critical line (van de Lune et al. (1986)). More than 41% of all the zeros in the critical strip lie on the critical line (Bui et al. (2011)). …