About the Project

of the first kind

AdvancedHelp

(0.013 seconds)

21—30 of 282 matching pages

21: 14.5 Special Values
In this subsection K ( k ) and E ( k ) denote the complete elliptic integrals of the first and second kinds; see §19.2(ii). …
14.5.28 𝖯 2 ( x ) = P 2 ( x ) = 3 x 2 1 2 ,
22: 29.16 Asymptotic Expansions
The approximations for Lamé polynomials hold uniformly on the rectangle 0 z K , 0 z K , when n k and n k assume large real values. …
23: 22.11 Fourier and Hyperbolic Series
22.11.3 dn ( z , k ) = π 2 K + 2 π K n = 1 q n cos ( 2 n ζ ) 1 + q 2 n .
22.11.7 ns ( z , k ) π 2 K csc ζ = 2 π K n = 0 q 2 n + 1 sin ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.10 dc ( z , k ) π 2 K sec ζ = 2 π K n = 0 ( 1 ) n q 2 n + 1 cos ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.13 sn 2 ( z , k ) = 1 k 2 ( 1 E K ) 2 π 2 k 2 K 2 n = 1 n q n 1 q 2 n cos ( 2 n ζ ) .
24: 14.6 Integer Order
14.6.6 𝖯 ν m ( x ) = ( 1 x 2 ) m / 2 x 1 x 1 𝖯 ν ( x ) ( d x ) m .
14.6.7 P ν m ( x ) = ( x 2 1 ) m / 2 1 x 1 x P ν ( x ) ( d x ) m ,
25: 14.2 Differential Equations
Standard solutions: 𝖯 ν ( ± x ) , 𝖰 ν ( ± x ) , 𝖰 ν 1 ( ± x ) , P ν ( ± x ) , Q ν ( ± x ) , Q ν 1 ( ± x ) . 𝖯 ν ( x ) and 𝖰 ν ( x ) are real when ν and x ( 1 , 1 ) , and P ν ( x ) and Q ν ( x ) are real when ν and x ( 1 , ) . … Standard solutions: 𝖯 ν μ ( ± x ) , 𝖯 ν μ ( ± x ) , 𝖰 ν μ ( ± x ) , 𝖰 ν 1 μ ( ± x ) , P ν μ ( ± x ) , P ν μ ( ± x ) , 𝑸 ν μ ( ± x ) , 𝑸 ν 1 μ ( ± x ) . … Ferrers functions and the associated Legendre functions are related to the Legendre functions by the equations 𝖯 ν 0 ( x ) = 𝖯 ν ( x ) , 𝖰 ν 0 ( x ) = 𝖰 ν ( x ) , P ν 0 ( x ) = P ν ( x ) , Q ν 0 ( x ) = Q ν ( x ) , 𝑸 ν 0 ( x ) = 𝑸 ν ( x ) = Q ν ( x ) / Γ ( ν + 1 ) . 𝖯 ν μ ( x ) , 𝖯 1 2 + i τ μ ( x ) , and 𝖰 ν μ ( x ) are real when ν , μ , and τ , and x ( 1 , 1 ) ; P ν μ ( x ) and 𝑸 ν μ ( x ) are real when ν and μ , and x ( 1 , ) . …
26: 22.5 Special Values
Table 22.5.1 gives the value of each of the 12 Jacobian elliptic functions, together with its z -derivative (or at a pole, the residue), for values of z that are integer multiples of K , i K . …
Table 22.5.1: Jacobian elliptic function values, together with derivatives or residues, for special values of the variable.
z
0 K K + i K i K 2 K 2 K + 2 i K 2 i K
Table 22.5.2: Other special values of Jacobian elliptic functions.
z
1 2 K 1 2 ( K + i K ) 1 2 i K
3 2 K 3 2 ( K + i K ) 3 2 i K
Expansions for K , K as k 0 or 1 are given in §§19.5, 19.12. …
27: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
22.12.2 2 K k sn ( 2 K t , k ) = n = π sin ( π ( t ( n + 1 2 ) τ ) ) = n = ( m = ( 1 ) m t m ( n + 1 2 ) τ ) ,
22.12.8 2 K dc ( 2 K t , k ) = n = π sin ( π ( t + 1 2 n τ ) ) = n = ( m = ( 1 ) m t + 1 2 m n τ ) ,
22.12.11 2 K ns ( 2 K t , k ) = n = π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m t m n τ ) ,
22.12.12 2 K ds ( 2 K t , k ) = n = ( 1 ) n π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m + n t m n τ ) ,
28: 29.8 Integral Equations
Let w ( z ) be any solution of (29.2.1) of period 4 K , w 2 ( z ) be a linearly independent solution, and 𝒲 { w , w 2 } denote their Wronskian. …
29.8.2 μ w ( z 1 ) w ( z 2 ) w ( z 3 ) = 2 K 2 K 𝖯 ν ( x ) w ( z ) d z ,
where 𝖯 ν ( x ) is the Ferrers function of the first kind14.3(i)), …
w ( z + 2 K ) = σ w ( z ) ,
29: 22.1 Special Notation
x , y real variables.
K , K K ( k ) , K ( k ) = K ( k ) (complete elliptic integrals of the first kind19.2(ii))).
τ i K / K .
30: 10.45 Functions of Imaginary Order
and I ~ ν ( x ) , K ~ ν ( x ) are real and linearly independent solutions of (10.45.1): … In consequence of (10.45.5)–(10.45.7), I ~ ν ( x ) and K ~ ν ( x ) comprise a numerically satisfactory pair of solutions of (10.45.1) when x is large, and either I ~ ν ( x ) and ( 1 / π ) sinh ( π ν ) K ~ ν ( x ) , or I ~ ν ( x ) and K ~ ν ( x ) , comprise a numerically satisfactory pair when x is small, depending whether ν 0 or ν = 0 . … For graphs of I ~ ν ( x ) and K ~ ν ( x ) see §10.26(iii). For properties of I ~ ν ( x ) and K ~ ν ( x ) , including uniform asymptotic expansions for large ν and zeros, see Dunster (1990a). In this reference I ~ ν ( x ) is denoted by ( 1 / π ) sinh ( π ν ) L i ν ( x ) . …