About the Project

of a complex variable

AdvancedHelp

(0.035 seconds)

21—30 of 469 matching pages

21: 16.6 Transformations of Variable
β–Ί
16.6.1 F 2 3 ⁑ ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a ⁒ F 2 3 ⁑ ( a b c + 1 , 1 2 ⁒ a , 1 2 ⁒ ( a + 1 ) a b + 1 , a c + 1 ; 4 ⁒ z ( 1 z ) 2 ) .
β–Ί
16.6.2 F 2 3 ⁑ ( a , 2 ⁒ b a 1 , 2 2 ⁒ b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a ⁒ F 2 3 ⁑ ( 1 3 ⁒ a , 1 3 ⁒ a + 1 3 , 1 3 ⁒ a + 2 3 b , a b + 3 2 ; 27 ⁒ z 4 ⁒ ( 1 z ) 3 ) .
22: 16.21 Differential Equation
β–Ί
16.21.1 ( ( 1 ) p m n ⁒ z ⁒ ( Ο‘ a 1 + 1 ) ⁒ β‹― ⁒ ( Ο‘ a p + 1 ) ( Ο‘ b 1 ) ⁒ β‹― ⁒ ( Ο‘ b q ) ) ⁒ w = 0 ,
β–Ί
23: 15.16 Products
β–Ί β–Ί
15.16.2 ( 1 z ) a + b c ⁒ F ⁑ ( 2 ⁒ a , 2 ⁒ b ; 2 ⁒ c 1 ; z ) = s = 0 A s ⁒ z s , | z | < 1 .
β–Ί
15.16.3 F ⁑ ( a , b c ; z ) ⁒ F ⁑ ( a , b c ; ΢ ) = s = 0 ( a ) s ⁒ ( b ) s ⁒ ( c a ) s ⁒ ( c b ) s ( c ) s ⁒ ( c ) 2 ⁒ s ⁒ s ! ⁒ ( z ⁒ ΢ ) s ⁒ F ⁑ ( a + s , b + s c + 2 ⁒ s ; z + ΢ z ⁒ ΢ ) , | z | < 1 , | ΢ | < 1 , | z + ΢ z ⁒ ΢ | < 1 .
β–Ί
15.16.4 F ⁑ ( a , b c ; z ) ⁒ F ⁑ ( a , b c ; z ) + a ⁒ b ⁒ ( a c ) ⁒ ( b c ) c 2 ⁒ ( 1 c 2 ) ⁒ z 2 ⁒ F ⁑ ( 1 + a , 1 + b 2 + c ; z ) ⁒ F ⁑ ( 1 a , 1 b 2 c ; z ) = 1 .
β–Ί
15.16.5 F ⁑ ( 1 2 + Ξ» , 1 2 Ξ½ 1 + Ξ» + ΞΌ ; z ) ⁒ F ⁑ ( 1 2 Ξ» , 1 2 + Ξ½ 1 + Ξ½ + ΞΌ ; 1 z ) + F ⁑ ( 1 2 + Ξ» , 1 2 Ξ½ 1 + Ξ» + ΞΌ ; z ) ⁒ F ⁑ ( 1 2 Ξ» , 1 2 + Ξ½ 1 + Ξ½ + ΞΌ ; 1 z ) F ⁑ ( 1 2 + Ξ» , 1 2 Ξ½ 1 + Ξ» + ΞΌ ; z ) ⁒ F ⁑ ( 1 2 Ξ» , 1 2 + Ξ½ 1 + Ξ½ + ΞΌ ; 1 z ) = Ξ“ ⁑ ( 1 + Ξ» + ΞΌ ) ⁒ Ξ“ ⁑ ( 1 + Ξ½ + ΞΌ ) Ξ“ ⁑ ( Ξ» + ΞΌ + Ξ½ + 3 2 ) ⁒ Ξ“ ⁑ ( 1 2 + Ξ½ ) , | ph ⁑ z | < Ο€ , | ph ⁑ ( 1 z ) | < Ο€ .
24: 8.11 Asymptotic Approximations and Expansions
β–Ί
8.11.2 Ξ“ ⁑ ( a , z ) = z a 1 ⁒ e z ⁒ ( k = 0 n 1 u k z k + R n ⁑ ( a , z ) ) , n = 1 , 2 , .
β–Ί β–Ί
8.11.4 γ ⁑ ( a , z ) = z a ⁒ e z ⁒ k = 0 z k ( a ) k + 1 , a 0 , 1 , 2 , .
β–Ί
8.11.6 Ξ³ ⁑ ( a , z ) z a ⁒ e z ⁒ k = 0 ( a ) k ⁒ b k ⁑ ( Ξ» ) ( z a ) 2 ⁒ k + 1 , 0 < Ξ» < 1 , | ph ⁑ a | Ο€ 2 Ξ΄ .
β–Ί
8.11.7 Ξ“ ⁑ ( a , z ) z a ⁒ e z ⁒ k = 0 ( a ) k ⁒ b k ⁑ ( Ξ» ) ( z a ) 2 ⁒ k + 1 , Ξ» > 1 , | ph ⁑ a | 3 ⁒ Ο€ 2 Ξ΄ .
25: 35.6 Confluent Hypergeometric Functions of Matrix Argument
β–Ί
35.6.2 Ξ¨ ⁑ ( a ; b ; 𝐓 ) = 1 Ξ“ m ⁑ ( a ) ⁒ 𝛀 etr ⁑ ( 𝐓 ⁒ 𝐗 ) ⁒ | 𝐗 | a 1 2 ⁒ ( m + 1 ) ⁒ | 𝐈 + 𝐗 | b a 1 2 ⁒ ( m + 1 ) ⁒ d 𝐗 , ⁑ ( a ) > 1 2 ⁒ ( m 1 ) , 𝐓 𝛀 .
β–Ί β–Ί
35.6.8 𝛀 | 𝐓 | c 1 2 ⁒ ( m + 1 ) ⁒ Ξ¨ ⁑ ( a ; b ; 𝐓 ) ⁒ d 𝐓 = Ξ“ m ⁑ ( c ) ⁒ Ξ“ m ⁑ ( a c ) ⁒ Ξ“ m ⁑ ( c b + 1 2 ⁒ ( m + 1 ) ) Ξ“ m ⁑ ( a ) ⁒ Ξ“ m ⁑ ( a b + 1 2 ⁒ ( m + 1 ) ) , ⁑ ( a ) > ⁑ ( c ) + 1 2 ⁒ ( m 1 ) > m 1 , ⁑ ( c b ) > 1 .
β–Ί β–Ί
35.6.10 lim a Ξ“ m ⁑ ( a ) ⁒ Ξ¨ ⁑ ( a + Ξ½ ; Ξ½ + 1 2 ⁒ ( m + 1 ) ; a 1 ⁒ 𝐓 ) = B Ξ½ ⁑ ( 𝐓 ) .
26: 15.6 Integral Representations
β–Ί
15.6.1 𝐅 ⁑ ( a , b ; c ; z ) = 1 Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c b ) ⁒ 0 1 t b 1 ⁒ ( 1 t ) c b 1 ( 1 z ⁒ t ) a ⁒ d t , | ph ⁑ ( 1 z ) | < Ο€ ; ⁑ c > ⁑ b > 0 .
β–Ί
15.6.2 𝐅 ⁑ ( a , b ; c ; z ) = Ξ“ ⁑ ( 1 + b c ) 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( b ) ⁒ 0 ( 1 + ) t b 1 ⁒ ( t 1 ) c b 1 ( 1 z ⁒ t ) a ⁒ d t , | ph ⁑ ( 1 z ) | < Ο€ ; c b 1 , 2 , 3 , , ⁑ b > 0 .
β–Ί
15.6.2_5 𝐅 ⁑ ( a , b ; c ; z ) = 1 Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c b ) ⁒ 0 t b 1 ⁒ ( t + 1 ) a c ( t z ⁒ t + 1 ) a ⁒ d t , | ph ⁑ ( 1 z ) | < Ο€ ; ⁑ c > ⁑ b > 0 .
β–Ί
15.6.8 𝐅 ⁑ ( a , b ; c ; z ) = 1 Ξ“ ⁑ ( c d ) ⁒ 0 1 𝐅 ⁑ ( a , b ; d ; z ⁒ t ) ⁒ t d 1 ⁒ ( 1 t ) c d 1 ⁒ d t , | ph ⁑ ( 1 z ) | < Ο€ ; ⁑ c > ⁑ d > 0 .
β–Ί
15.6.9 𝐅 ⁑ ( a , b ; c ; z ) = 0 1 t d 1 ⁒ ( 1 t ) c d 1 ( 1 z ⁒ t ) a + b Ξ» ⁒ 𝐅 ⁑ ( Ξ» a , Ξ» b d ; z ⁒ t ) ⁒ 𝐅 ⁑ ( a + b Ξ» , Ξ» d c d ; ( 1 t ) ⁒ z 1 z ⁒ t ) ⁒ d t , | ph ⁑ ( 1 z ) | < Ο€ ; Ξ» β„‚ , ⁑ c > ⁑ d > 0 .
27: 8.6 Integral Representations
β–Ί
8.6.3 γ ⁑ ( a , z ) = z a ⁒ 0 exp ⁑ ( a ⁒ t z ⁒ e t ) ⁒ d t , ⁑ a > 0 .
β–Ί
8.6.7 Ξ“ ⁑ ( a , z ) = z a ⁒ 0 exp ⁑ ( a ⁒ t z ⁒ e t ) ⁒ d t , ⁑ z > 0 .
β–Ί
8.6.10 Ξ³ ⁑ ( a , z ) = 1 2 ⁒ Ο€ ⁒ i ⁒ c i ⁒ c + i ⁒ Ξ“ ⁑ ( s ) a s ⁒ z a s ⁒ d s , | ph ⁑ z | < 1 2 ⁒ Ο€ , a 0 , 1 , 2 , ,
β–Ί
8.6.11 Ξ“ ⁑ ( a , z ) = 1 2 ⁒ Ο€ ⁒ i ⁒ c i ⁒ c + i ⁒ Ξ“ ⁑ ( s + a ) ⁒ z s s ⁒ d s , | ph ⁑ z | < 1 2 ⁒ Ο€ ,
β–Ί
8.6.12 Ξ“ ⁑ ( a , z ) = z a 1 ⁒ e z Ξ“ ⁑ ( 1 a ) ⁒ 1 2 ⁒ Ο€ ⁒ i ⁒ c i ⁒ c + i ⁒ Ξ“ ⁑ ( s + 1 a ) ⁒ Ο€ ⁒ z s sin ⁑ ( Ο€ ⁒ s ) ⁒ d s , | ph ⁑ z | < 3 2 ⁒ Ο€ , a 1 , 2 , 3 , .
28: 15.12 Asymptotic Approximations
β–Ί
  • (d)

    ⁑ z > 1 2 and Ξ± 1 2 ⁒ Ο€ + Ξ΄ ph ⁑ c Ξ± + + 1 2 ⁒ Ο€ Ξ΄ , where

    15.12.1 Ξ± ± = arctan ⁑ ( ph ⁑ z ph ⁑ ( 1 z ) βˆ“ Ο€ ln ⁑ | 1 z 1 | ) ,

    with z restricted so that ± Ξ± ± [ 0 , 1 2 ⁒ Ο€ ) .

  • β–Ί β–Ί β–Ί
    15.12.4 ( e t 1 t ) b 1 ⁒ e t ⁒ ( 1 c ) ⁒ ( 1 z + z ⁒ e t ) a = s = 0 q s ⁑ ( z ) ⁒ t s .
    β–Ί
    15.12.13 G 0 ⁑ ( ± Ξ² ) = ( 2 + e ± ΞΆ ) c b ( 1 / 2 ) ⁒ ( 1 + e ± ΞΆ ) a c + ( 1 / 2 ) ⁒ ( z 1 e ± ΞΆ ) a + ( 1 / 2 ) ⁒ Ξ² e ΞΆ e ΞΆ .
    29: 20.12 Mathematical Applications
    β–ΊThis ability to uniformize multiply-connected spaces (manifolds), or multi-sheeted functions of a complex variable (Riemann (1899), Rauch and Lebowitz (1973), Siegel (1988)) has led to applications in string theory (Green et al. (1988a, b), Krichever and Novikov (1989)), and also in statistical mechanics (Baxter (1982)). …
    30: 35.8 Generalized Hypergeometric Functions of Matrix Argument
    β–Ί β–Ί β–Ί
    35.8.9 lim Ξ³ F q p + 1 ⁑ ( a 1 , , a p , Ξ³ b 1 , , b q ; Ξ³ 1 ⁒ 𝐓 ) = F q p ⁑ ( a 1 , , a p b 1 , , b q ; 𝐓 ) ,
    β–Ί
    35.8.10 lim Ξ³ F q + 1 p ⁑ ( a 1 , , a p b 1 , , b q , Ξ³ ; Ξ³ ⁒ 𝐓 ) = F q p ⁑ ( a 1 , , a p b 1 , , b q ; 𝐓 ) .
    β–Ί