About the Project

numerical evaluation

AdvancedHelp

(0.002 seconds)

11—20 of 33 matching pages

11: Bibliography O
  • C. Osácar, J. Palacián, and M. Palacios (1995) Numerical evaluation of the dilogarithm of complex argument. Celestial Mech. Dynam. Astronom. 62 (1), pp. 93–98.
  • 12: Bibliography B
  • R. Barakat and E. Parshall (1996) Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy. Appl. Math. Lett. 9 (5), pp. 21–26.
  • V. Bezvoda, R. Farzan, K. Segeth, and G. Takó (1986) On numerical evaluation of integrals involving Bessel functions. Apl. Mat. 31 (5), pp. 396–410.
  • G. Blanch (1964) Numerical evaluation of continued fractions. SIAM Rev. 6 (4), pp. 383–421.
  • J. M. Borwein and I. J. Zucker (1992) Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind. IMA J. Numer. Anal. 12 (4), pp. 519–526.
  • 13: Bibliography F
  • C. H. Franke (1965) Numerical evaluation of the elliptic integral of the third kind. Math. Comp. 19 (91), pp. 494–496.
  • 14: Bibliography G
  • B. Gabutti and G. Allasia (2008) Evaluation of q -gamma function and q -analogues by iterative algorithms. Numer. Algorithms 49 (1-4), pp. 159–168.
  • B. Gabutti and B. Minetti (1981) A new application of the discrete Laguerre polynomials in the numerical evaluation of the Hankel transform of a strongly decreasing even function. J. Comput. Phys. 42 (2), pp. 277–287.
  • 15: Bibliography
  • G. Allasia and R. Besenghi (1991) Numerical evaluation of the Kummer function with complex argument by the trapezoidal rule. Rend. Sem. Mat. Univ. Politec. Torino 49 (3), pp. 315–327.
  • 16: Bibliography K
  • N. P. Kirk, J. N. L. Connor, and C. A. Hobbs (2000) An adaptive contour code for the numerical evaluation of the oscillatory cuspoid canonical integrals and their derivatives. Computer Physics Comm. 132 (1-2), pp. 142–165.
  • 17: Bibliography J
  • W. B. Jones and W. J. Thron (1974) Numerical stability in evaluating continued fractions. Math. Comp. 28 (127), pp. 795–810.
  • 18: 3.8 Nonlinear Equations
    Because the method requires only one function evaluation per iteration, its numerical efficiency is ultimately higher than that of Newton’s method. …
    19: Bibliography M
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • 20: 14.32 Methods of Computation
  • Numerical integration (§3.7) of the defining differential equations (14.2.2), (14.20.1), and (14.21.1).

  • Evaluation3.10) of the continued fractions given in §14.14. See Gil and Segura (2000).