About the Project

nba直播免费观看360低调【世界杯下注qee9.com】3cjm

AdvancedHelp

(0.003 seconds)

11—20 of 569 matching pages

11: Bibliography D
  • S. D. Daymond (1955) The principal frequencies of vibrating systems with elliptic boundaries. Quart. J. Mech. Appl. Math. 8 (3), pp. 361–372.
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • L. E. Dickson (1919) History of the Theory of Numbers (3 volumes). Carnegie Institution of Washington, Washington, D.C..
  • A. R. DiDonato and A. H. Morris (1992) Algorithm 708: Significant digit computation of the incomplete beta function ratios. ACM Trans. Math. Software 18 (3), pp. 360–373.
  • A. M. Din (1981) A simple sum formula for Clebsch-Gordan coefficients. Lett. Math. Phys. 5 (3), pp. 207–211.
  • 12: Bibliography S
  • L. Schoenfeld (1976) Sharper bounds for the Chebyshev functions θ ( x ) and ψ ( x ) . II. Math. Comp. 30 (134), pp. 337–360.
  • K. Schulten and R. G. Gordon (1976) Recursive evaluation of 3 j - and 6 j - coefficients. Comput. Phys. Comm. 11 (2), pp. 269–278.
  • K. Schulten and R. G. Gordon (1975a) Exact recursive evaluation of 3 j - and 6 j -coefficients for quantum-mechanical coupling of angular momenta. J. Mathematical Phys. 16 (10), pp. 1961–1970.
  • K. Schulten and R. G. Gordon (1975b) Semiclassical approximations to 3 j - and 6 j -coefficients for quantum-mechanical coupling of angular momenta. J. Mathematical Phys. 16 (10), pp. 1971–1988.
  • J. Shapiro (1970) Arbitrary 3 n j symbols for SU ( 2 ) . Comput. Phys. Comm. 1 (3), pp. 207–215.
  • 13: Bibliography B
  • H. Bateman (1905) A generalisation of the Legendre polynomial. Proc. London Math. Soc. (2) 3 (3), pp. 111–123.
  • R. J. Baxter (1981) Rogers-Ramanujan identities in the hard hexagon model. J. Statist. Phys. 26 (3), pp. 427–452.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • T. Bountis, H. Segur, and F. Vivaldi (1982) Integrable Hamiltonian systems and the Painlevé property. Phys. Rev. A (3) 25 (3), pp. 1257–1264.
  • W. G. C. Boyd (1990a) Asymptotic Expansions for the Coefficient Functions Associated with Linear Second-order Differential Equations: The Simple Pole Case. In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.), Lecture Notes in Pure and Applied Mathematics, Vol. 124, pp. 53–73.
  • 14: 25.11 Hurwitz Zeta Function
    See accompanying text
    Figure 25.11.1: Hurwitz zeta function ζ ( x , a ) , a = 0. 3, 0. … Magnify
    where h , k are integers with 1 h k and n = 1 , 2 , 3 , . …
    25.11.23 ζ ( 1 2 n , 1 3 ) = π ( 9 n 1 ) B 2 n 8 n 3 ( 3 2 n 1 1 ) B 2 n ln 3 4 n 3 2 n 1 ( 1 ) n ψ ( 2 n 1 ) ( 1 3 ) 2 3 ( 6 π ) 2 n 1 ( 3 2 n 1 1 ) ζ ( 1 2 n ) 2 3 2 n 1 , n = 1 , 2 , 3 , .
    For further sums see Prudnikov et al. (1990, pp. 396–397) and Hansen (1975, pp. 358–360). …
    25.11.45 ζ ( 2 , a ) 1 12 a + 1 9 a 3 ( 1 6 a 1 2 a 2 + 1 3 a 3 ) ln a k = 1 2 B 2 k + 2 ( 2 k + 2 ) ( 2 k + 1 ) 2 k ( 2 k 1 ) a ( 2 k 1 ) .
    15: 1.9 Calculus of a Complex Variable
    The cross ratio of z 1 , z 2 , z 3 , z 4 { } is defined by
    1.9.45 ( z 1 z 2 ) ( z 3 z 4 ) ( z 1 z 4 ) ( z 3 z 2 ) ,
    b 2 = ( a 1 2 a 0 a 2 ) / a 0 3 ,
    1.9.57 ln f ( z ) = q 1 z + q 2 z 2 + q 3 z 3 + ,
    q 3 = ( 3 a 3 3 a 1 a 2 + a 1 3 ) / 3 ,
    16: 16.8 Differential Equations
    For further information see Hille (1976, pp. 360–370). …
    17: 34.11 Higher-Order 3 n j Symbols
    §34.11 Higher-Order 3 n j Symbols
    18: 4.17 Special Values and Limits
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
    θ sin θ cos θ tan θ csc θ sec θ cot θ
    π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) 2 3 2 ( 3 + 1 ) 2 ( 3 1 ) 2 + 3
    π / 6 1 2 1 2 3 1 3 3 2 2 3 3 3
    π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
    2 π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
    5 π / 6 1 2 1 2 3 1 3 3 2 2 3 3 3
    19: 34.12 Physical Applications
    §34.12 Physical Applications
    The angular momentum coupling coefficients ( 3 j , 6 j , and 9 j symbols) are essential in the fields of nuclear, atomic, and molecular physics. … 3 j , 6 j , and 9 j symbols are also found in multipole expansions of solutions of the Laplace and Helmholtz equations; see Carlson and Rushbrooke (1950) and Judd (1976).
    20: 34.3 Basic Properties: 3 j Symbol
    §34.3 Basic Properties: 3 j Symbol
    §34.3(ii) Symmetry
    §34.3(iv) Orthogonality
    §34.3(vi) Sums