About the Project

mutual inductance of coaxial circles

AdvancedHelp

(0.003 seconds)

21—30 of 412 matching pages

21: 7.9 Continued Fractions
7.9.1 π e z 2 erfc z = z z 2 + 1 2 1 + 1 z 2 + 3 2 1 + 2 z 2 + , z > 0 ,
7.9.2 π e z 2 erfc z = 2 z 2 z 2 + 1 1 2 2 z 2 + 5 3 4 2 z 2 + 9 , z > 0 ,
7.9.3 w ( z ) = i π 1 z 1 2 z 1 z 3 2 z 2 z , z > 0 .
22: 7.10 Derivatives
7.10.1 d n + 1 erf z d z n + 1 = ( 1 ) n 2 π H n ( z ) e z 2 , n = 0 , 1 , 2 , .
7.10.2 w ( z ) = 2 z w ( z ) + ( 2 i / π ) ,
23: 6.4 Analytic Continuation
6.4.2 E 1 ( z e 2 m π i ) = E 1 ( z ) 2 m π i , m ,
6.4.4 Ci ( z e ± π i ) = ± π i + Ci ( z ) ,
6.4.5 Chi ( z e ± π i ) = ± π i + Chi ( z ) ,
6.4.6 f ( z e ± π i ) = π e i z f ( z ) ,
6.4.7 g ( z e ± π i ) = π i e i z + g ( z ) .
24: 24.11 Asymptotic Approximations
24.11.1 ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n ,
24.11.2 ( 1 ) n + 1 B 2 n 4 π n ( n π e ) 2 n ,
24.11.3 ( 1 ) n E 2 n 2 2 n + 2 ( 2 n ) ! π 2 n + 1 ,
24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
24.11.5 ( 1 ) n / 2 1 ( 2 π ) n 2 ( n ! ) B n ( x ) { cos ( 2 π x ) , n  even , sin ( 2 π x ) , n  odd ,
25: 10.64 Integral Representations
10.64.1 ber n ( x 2 ) = ( 1 ) n π 0 π cos ( x sin t n t ) cosh ( x sin t ) d t ,
10.64.2 bei n ( x 2 ) = ( 1 ) n π 0 π sin ( x sin t n t ) sinh ( x sin t ) d t .
26: 18.33 Polynomials Orthogonal on the Unit Circle
§18.33 Polynomials Orthogonal on the Unit Circle
§18.33(i) Definition
§18.33(ii) Recurrence Relations
§18.33(v) Biorthogonal Polynomials on the Unit Circle
Recurrence Relations
27: 4.4 Special Values and Limits
4.4.2 ln ( 1 ± i 0 ) = ± π i ,
4.4.3 ln ( ± i ) = ± 1 2 π i .
4.4.5 e ± π i = 1 ,
4.4.6 e ± π i / 2 = ± i ,
28: 24.7 Integral Representations
24.7.1 B 2 n = ( 1 ) n + 1 4 n 1 2 1 2 n 0 t 2 n 1 e 2 π t + 1 d t = ( 1 ) n + 1 2 n 1 2 1 2 n 0 t 2 n 1 e π t sech ( π t ) d t ,
24.7.2 B 2 n = ( 1 ) n + 1 4 n 0 t 2 n 1 e 2 π t 1 d t = ( 1 ) n + 1 2 n 0 t 2 n 1 e π t csch ( π t ) d t ,
24.7.3 B 2 n = ( 1 ) n + 1 π 1 2 1 2 n 0 t 2 n sech 2 ( π t ) d t ,
24.7.4 B 2 n = ( 1 ) n + 1 π 0 t 2 n csch 2 ( π t ) d t ,
24.7.6 E 2 n = ( 1 ) n 2 2 n + 1 0 t 2 n sech ( π t ) d t .
29: 6.9 Continued Fraction
6.9.1 E 1 ( z ) = e z z + 1 1 + 1 z + 2 1 + 2 z + 3 1 + 3 z + , | ph z | < π .
30: 7.7 Integral Representations
7.7.1 erfc z = 2 π e z 2 0 e z 2 t 2 t 2 + 1 d t , | ph z | 1 4 π ,
7.7.2 w ( z ) = 1 π i e t 2 d t t z = 2 z π i 0 e t 2 d t t 2 z 2 , z > 0 .
7.7.3 0 e a t 2 + 2 i z t d t = 1 2 π a e z 2 / a + i a F ( z a ) , a > 0 .
7.7.4 0 e a t t + z 2 d t = π a e a z 2 erfc ( a z ) , a > 0 , z > 0 .
7.7.9 0 x erf t d t = x erf x + 1 π ( e x 2 1 ) .