About the Project

modified Bessel equation

AdvancedHelp

(0.003 seconds)

31—40 of 66 matching pages

31: 13.16 Integral Representations
13.16.4 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = z e 1 2 z Γ ( 1 2 + μ κ ) 0 e t t κ 1 2 I 2 μ ( 2 z t ) d t , ( κ μ ) 1 2 < 0 .
32: 10.56 Generating Functions
§10.56 Generating Functions
10.56.1 cos z 2 2 z t z = cos z z + n = 1 t n n ! 𝗃 n 1 ( z ) ,
10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,
10.56.5 exp ( z 2 + 2 i z t ) z = e z z + 2 π n = 1 ( i t ) n n ! 𝗄 n 1 ( z ) .
33: Bibliography B
  • C. B. Balogh (1967) Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math. 15, pp. 1315–1323.
  • Á. Baricz and T. K. Pogány (2013) Integral representations and summations of the modified Struve function. Acta Math. Hungar. 141 (3), pp. 254–281.
  • R. F. Barrett (1964) Tables of modified Struve functions of orders zero and unity.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • K. H. Burrell (1974) Algorithm 484: Evaluation of the modified Bessel functions K0(Z) and K1(Z) for complex arguments. Comm. ACM 17 (9), pp. 524–526.
  • 34: Bibliography S
  • J. Segura, P. Fernández de Córdoba, and Yu. L. Ratis (1997) A code to evaluate modified Bessel functions based on the continued fraction method. Comput. Phys. Comm. 105 (2-3), pp. 263–272.
  • J. Segura (2011) Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 374 (2), pp. 516–528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • A. Sharples (1971) Uniform asymptotic expansions of modified Mathieu functions. J. Reine Angew. Math. 247, pp. 1–17.
  • S. L. Skorokhodov (1985) On the calculation of complex zeros of the modified Bessel function of the second kind. Dokl. Akad. Nauk SSSR 280 (2), pp. 296–299.
  • 35: Bibliography P
  • B. V. Paltsev (1999) On two-sided estimates, uniform with respect to the real argument and index, for modified Bessel functions. Mat. Zametki 65 (5), pp. 681–692 (Russian).
  • R. Parnes (1972) Complex zeros of the modified Bessel function K n ( Z ) . Math. Comp. 26 (120), pp. 949–953.
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • A. Poquérusse and S. Alexiou (1999) Fast analytic formulas for the modified Bessel functions of imaginary order for spectral line broadening calculations. J. Quantit. Spec. and Rad. Trans. 62 (4), pp. 389–395.
  • 36: 18.12 Generating Functions
    18.12.2 𝐅 1 0 ( α + 1 ; ( x 1 ) z 2 ) 𝐅 1 0 ( β + 1 ; ( x + 1 ) z 2 ) = ( 1 2 ( 1 x ) z ) 1 2 α J α ( 2 ( 1 x ) z ) ( 1 2 ( 1 + x ) z ) 1 2 β I β ( 2 ( 1 + x ) z ) = n = 0 P n ( α , β ) ( x ) Γ ( n + α + 1 ) Γ ( n + β + 1 ) z n ,
    37: 28.28 Integrals, Integral Representations, and Integral Equations
    §28.28 Integrals, Integral Representations, and Integral Equations
    §28.28(i) Equations with Elementary Kernels
    For details and further equations see Meixner et al. (1980, §2.1.1) and Sips (1970).
    §28.28(ii) Integrals of Products with Bessel Functions
    §28.28(v) Compendia
    38: Guide to Searching the DLMF
    From there you can also access an advanced search page where you can control certain settings, narrowing the search to certain chapters, or restricting the results to equations, graphs, tables, or bibliographic items. … Therefore, if your query is Ai^2+Bi^2, the system modifies the query so it will find the equations containing the latter expressions. … For example, for the Bessel function K n ( z ) , you can write K_n(z), BesselK_n(z), BesselK(n,z), or BesselK[n,z]. Note that the first form may match other functions K than the Bessel K function, so if you are sure you want Bessel K , you might as well enter one of the other 3 forms. … For example, you may want equations that contain trigonometric functions, but you don’t care which trigonometric function. …
    39: 28.20 Definitions and Basic Properties
    §28.20(i) Modified Mathieu’s Equation
    When z is replaced by ± i z , (28.2.1) becomes the modified Mathieu’s equation:
    28.20.1 w ′′ ( a 2 q cosh ( 2 z ) ) w = 0 ,
    §28.20(iv) Radial Mathieu Functions Mc n ( j ) , Ms n ( j )
    §28.20(vi) Wronskians
    40: 8.7 Series Expansions
    §8.7 Series Expansions
    For the functions e n ( z ) , 𝗂 n ( 1 ) ( z ) , and L n ( α ) ( x ) see (8.4.11), §§10.47(ii), and 18.3, respectively. …
    8.7.4 γ ( a , x ) = Γ ( a ) x 1 2 a e x n = 0 e n ( 1 ) x 1 2 n I n + a ( 2 x 1 / 2 ) , a 0 , 1 , 2 , .
    8.7.5 γ ( a , z ) = e 1 2 z n = 0 ( 1 a ) n Γ ( n + a + 1 ) ( 2 n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) .
    For an expansion for γ ( a , i x ) in series of Bessel functions J n ( x ) that converges rapidly when a > 0 and x ( 0 ) is small or moderate in magnitude see Barakat (1961).