modified Mathieu functions
(0.005 seconds)
1—10 of 31 matching pages
1: 28.20 Definitions and Basic Properties
…
►
§28.20(ii) Solutions , , , ,
… ►For other values of , , and the functions , , are determined by analytic continuation. … ►§28.20(iv) Radial Mathieu Functions ,
… ►§28.20(vi) Wronskians
… ►§28.20(vii) Shift of Variable
…2: 28.27 Addition Theorems
§28.27 Addition Theorems
…3: 28.22 Connection Formulas
§28.22 Connection Formulas
… ►
28.22.4
►The joining factors in the above formulas are given by
…
►
28.22.13
…
►
4: 28.23 Expansions in Series of Bessel Functions
5: 28.1 Special Notation
…
►
►
…
►and the modified Mathieu functions
►
►
►The functions
and are also known as the radial Mathieu functions.
…
►
…
integers. | |
… | |
order of the Mathieu function or modified Mathieu function. (When is an integer it is often replaced by .) | |
… |
, | , | , | , |
… |
6: 28.35 Tables
§28.35 Tables
… ►Kirkpatrick (1960) contains tables of the modified functions , for , , ; 4D or 5D.
Zhang and Jin (1996, pp. 521–532) includes the eigenvalues , for , ; (’s) or 19 (’s), . Fourier coefficients for , , . Mathieu functions , , and their first -derivatives for , . Modified Mathieu functions , , and their first -derivatives for , , . Precision is mostly 9S.
Blanch and Clemm (1969) includes eigenvalues , for , , , ; 4D. Also and for , , and , respectively; 8D. Double points for ; 8D. Graphs are included.
§28.35(iii) Zeros
…7: 28.34 Methods of Computation
…
►
§28.34(iv) Modified Mathieu Functions
…8: 28.33 Physical Applications
§28.33 Physical Applications
… ►
28.33.2
…
►
28.33.3
…
►
Torres-Vega et al. (1998) for Mathieu functions in phase space.
9: 28.28 Integrals, Integral Representations, and Integral Equations
…
►
§28.28(i) Equations with Elementary Kernels
… ►
28.28.11
…
►
28.28.15
…
►