About the Project

modified Mathieu equation

AdvancedHelp

(0.004 seconds)

1—10 of 26 matching pages

1: 28.20 Definitions and Basic Properties
§28.20(i) Modified Mathieu’s Equation
When z is replaced by ± i z , (28.2.1) becomes the modified Mathieu’s equation:
28.20.1 w ′′ ( a 2 q cosh ( 2 z ) ) w = 0 ,
28.20.2 ( ζ 2 1 ) w ′′ + ζ w + ( 4 q ζ 2 2 q a ) w = 0 , ζ = cosh z .
28.20.6 Fe n ( z , q ) = i fe n ( ± i z , q ) , n = 0 , 1 , ,
2: 28.23 Expansions in Series of Bessel Functions
28.23.6 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h cosh z ) ,
28.23.7 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 1 2 π , h 2 ) ) 1 = 0 A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h sinh z ) ,
28.23.8 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( ce 2 m + 1 ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
28.23.10 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 1 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 1 ) B 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
28.23.12 Ms 2 m + 2 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 2 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 2 ) B 2 + 2 2 m + 2 ( h 2 ) 𝒞 2 + 2 ( j ) ( 2 h cosh z ) ,
3: 28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
28.24.7 Io 2 m + 2 ( z , h ) = ( 1 ) s = 0 ( 1 ) B 2 + 2 2 m + 2 ( h 2 ) B 2 s + 2 2 m + 2 ( h 2 ) ( I s ( h e z ) I + s + 2 ( h e z ) I + s + 2 ( h e z ) I s ( h e z ) ) ,
28.24.8 Ie 2 m + 1 ( z , h ) = ( 1 ) s = 0 ( 1 ) B 2 + 1 2 m + 1 ( h 2 ) B 2 s + 1 2 m + 1 ( h 2 ) ( I s ( h e z ) I + s + 1 ( h e z ) + I + s + 1 ( h e z ) I s ( h e z ) ) ,
28.24.11 Ko 2 m + 2 ( z , h ) = = 0 B 2 + 2 2 m + 2 ( h 2 ) B 2 s + 2 2 m + 2 ( h 2 ) ( I s ( h e z ) K + s + 2 ( h e z ) I + s + 2 ( h e z ) K s ( h e z ) ) ,
28.24.12 Ke 2 m + 1 ( z , h ) = = 0 B 2 + 1 2 m + 1 ( h 2 ) B 2 s + 1 2 m + 1 ( h 2 ) ( I s ( h e z ) K + s + 1 ( h e z ) I + s + 1 ( h e z ) K s ( h e z ) ) ,
28.24.13 Ko 2 m + 1 ( z , h ) = = 0 A 2 + 1 2 m + 1 ( h 2 ) A 2 s + 1 2 m + 1 ( h 2 ) ( I s ( h e z ) K + s + 1 ( h e z ) + I + s + 1 ( h e z ) K s ( h e z ) ) .
4: 28.22 Connection Formulas
28.22.13 M ν ( 1 ) ( z , h ) = M ν ( 1 ) ( 0 , h ) me ν ( 0 , h 2 ) Me ν ( z , h 2 ) .
28.22.14 M ν ( 2 ) ( z , h ) = cot ( ν π ) M ν ( 1 ) ( z , h ) 1 sin ( ν π ) M ν ( 1 ) ( z , h ) .
5: 28.8 Asymptotic Expansions for Large q
Barrett (1981) supplies asymptotic approximations for numerically satisfactory pairs of solutions of both Mathieu’s equation (28.2.1) and the modified Mathieu equation (28.20.1). …
6: 28.32 Mathematical Applications
The separated solutions V ( ξ , η ) = v ( ξ ) w ( η ) can be obtained from the modified Mathieu’s equation (28.20.1) for v and from Mathieu’s equation (28.2.1) for w , where a is the separation constant and q = 1 4 c 2 k 2 . …
7: 28.26 Asymptotic Approximations for Large q
28.26.1 Mc m ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fc m ( z , h ) i Gc m ( z , h ) ) ,
28.26.2 i Ms m + 1 ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fs m ( z , h ) i Gs m ( z , h ) ) ,
8: 28.25 Asymptotic Expansions for Large z
28.25.1 M ν ( 3 , 4 ) ( z , h ) e ± i ( 2 h cosh z ( 1 2 ν + 1 4 ) π ) ( π h ( cosh z + 1 ) ) 1 2 m = 0 D m ± ( 4 i h ( cosh z + 1 ) ) m ,
9: 28.35 Tables
§28.35 Tables
  • Blanch and Clemm (1969) includes eigenvalues a n ( q ) , b n ( q ) for q = ρ e i ϕ , ρ = 0 ( .5 ) 25 , ϕ = 5 ( 5 ) 90 , n = 0 ( 1 ) 15 ; 4D. Also a n ( q ) and b n ( q ) for q = i ρ , ρ = 0 ( .5 ) 100 , n = 0 ( 2 ) 14 and n = 2 ( 2 ) 16 , respectively; 8D. Double points for n = 0 ( 1 ) 15 ; 8D. Graphs are included.

  • 10: 28.1 Special Notation
    The main functions treated in this chapter are the Mathieu functions …and the modified Mathieu functions …The functions Mc n ( j ) ( z , h ) and Ms n ( j ) ( z , h ) are also known as the radial Mathieu functions. The eigenvalues of Mathieu’s equation are denoted by … The radial functions Mc n ( j ) ( z , h ) and Ms n ( j ) ( z , h ) are denoted by Mc n ( j ) ( z , q ) and Ms n ( j ) ( z , q ) , respectively.