About the Project

machine epsilon

AdvancedHelp

(0.001 seconds)

21—30 of 69 matching pages

21: 32.7 Bäcklund Transformations
P II  also has the special transformation …with ζ = 2 1 / 3 z and ε = ± 1 , where W ( ζ ; 1 2 ε ) satisfies P II  with z = ζ , α = 1 2 ε , and w ( z ; 0 ) satisfies P II  with α = 0 . … and ε j = ± 1 , j = 1 , 2 , 3 , independently. …Again, since ε j = ± 1 , j = 1 , 2 , 3 , independently, there are eight distinct transformations of type 𝒯 ε 1 , ε 2 , ε 3 . … with ε = ± 1 . …
22: 22.1 Special Notation
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . …
23: 31.3 Basic Solutions
Q j = j ( ( j 1 + γ ) ( 1 + a ) + a δ + ϵ ) ,
31.3.7 ( 1 z ) 1 δ H ( 1 a , ( ( 1 a ) γ + ϵ ) ( 1 δ ) + α β q ; α + 1 δ , β + 1 δ , 2 δ , γ ; 1 z ) .
Solutions of (31.2.1) corresponding to the exponents 0 and 1 ϵ at z = a are respectively, …
31.3.9 ( a z a 1 ) 1 ϵ H ( a a 1 , ( a ( δ + γ ) γ ) ( 1 ϵ ) a 1 + α β a q a 1 ; α + 1 ϵ , β + 1 ϵ , 2 ϵ , δ ; a z a 1 ) .
24: 31.10 Integral Equations and Representations
31.10.2 ρ ( t ) = t γ 1 ( t 1 ) δ 1 ( t a ) ϵ 1 ,
31.10.6 p ( t ) = t γ ( t 1 ) δ ( t a ) ϵ .
31.10.13 ρ ( s , t ) = ( s t ) ( s t ) γ 1 ( ( 1 s ) ( 1 t ) ) δ 1 ( ( 1 ( s / a ) ) ( 1 ( t / a ) ) ) ϵ 1 ,
31.10.19 𝒦 ( u , v , w ) = u 1 γ v 1 δ w 1 ϵ 𝒞 1 γ ( u σ 1 ) 𝒞 1 δ ( v σ 2 ) 𝒞 1 ϵ ( i w σ 1 + σ 2 ) ,
a + b = δ + ϵ 1 ,
25: 23.18 Modular Transformations
23.18.5 η ( 𝒜 τ ) = ε ( 𝒜 ) ( i ( c τ + d ) ) 1 / 2 η ( τ ) ,
where the square root has its principal value and
23.18.6 ε ( 𝒜 ) = exp ( π i ( a + d 12 c + s ( d , c ) ) ) ,
26: 31.1 Special Notation
x , y real variables.
q , α , β , γ , δ , ϵ , ν complex parameters.
27: 3.9 Acceleration of Convergence
The ratio of the Hankel determinants in (3.9.9) can be computed recursively by Wynn’s epsilon algorithm:
ε 1 ( n ) = 0 ,
Then t n , 2 k = ε 2 k ( n ) . … If s n is the n th partial sum of a power series f , then t n , 2 k = ε 2 k ( n ) is the Padé approximant [ ( n + k ) / k ] f 3.11(iv)). For further information on the epsilon algorithm see Brezinski and Redivo Zaglia (1991, pp. 78–95). …
28: 22.18 Mathematical Applications
Ellipse
22.18.3 l ( u ) = a ( u , k ) ,
where ( u , k ) is Jacobi’s epsilon function (§22.16(ii)). …
29: 18.39 Applications in the Physical Sciences
which in one dimensional systems are typically non-degenerate, namely there is only a single eigenfunction corresponding to each ϵ n , n 0 . …The ϵ n are the observable energies of the system, and an increasing function of n . … with ρ n and ϵ n being those of (18.39.35), are then … with matrix eigenvalues ϵ = ϵ i N , i = 1 , 2 , , N , and the eigenvectors, 𝐜 ( ϵ ) = ( c 0 ( ϵ ) , c 1 ( ϵ ) , , c N 1 ( ϵ ) ) , are determined by the recursion relation (18.39.46) below. … With N the functions normalized as δ ( ϵ ϵ ) with measure d r are, formally, …
30: 31.9 Orthogonality
31.9.2 ζ ( 1 + , 0 + , 1 , 0 ) t γ 1 ( 1 t ) δ 1 ( t a ) ϵ 1 w m ( t ) w k ( t ) d t = δ m , k θ m .
31.9.3 θ m = ( 1 e 2 π i γ ) ( 1 e 2 π i δ ) ζ γ ( 1 ζ ) δ ( ζ a ) ϵ f 0 ( q , ζ ) f 1 ( q , ζ ) q 𝒲 { f 0 ( q , ζ ) , f 1 ( q , ζ ) } | q = q m ,
31.9.6 ρ ( s , t ) = ( s t ) ( s t ) γ 1 ( ( s 1 ) ( t 1 ) ) δ 1 ( ( s a ) ( t a ) ) ϵ 1 ,