About the Project

limit point and limit circle boundary conditions

AdvancedHelp

(0.002 seconds)

11—20 of 237 matching pages

11: 32.14 Combinatorics
32.14.1 lim N Prob ( N ( 𝝅 ) 2 N N 1 / 6 s ) = F ( s ) ,
The distribution function F ( s ) given by (32.14.2) arises in random matrix theory where it gives the limiting distribution for the normalized largest eigenvalue in the Gaussian Unitary Ensemble of n × n Hermitian matrices; see Tracy and Widom (1994). …
12: 3.7 Ordinary Differential Equations
Consideration will be limited to ordinary linear second-order differential equationswith limits taken in (3.7.16) when a or b , or both, are infinite. …
3.7.17 λ 1 < λ 2 < λ 3 < , lim k λ k = .
13: 15.11 Riemann’s Differential Equation
Also, if any of α , β , γ , is at infinity, then we take the corresponding limit in (15.11.1). …
14: 28.7 Analytic Continuation of Eigenvalues
The number of branch points is infinite, but countable, and there are no finite limit points. …
15: 4.4 Special Values and Limits
§4.4 Special Values and Limits
§4.4(iii) Limits
4.4.14 lim x 0 x a ln x = 0 , a > 0 ,
4.4.16 lim z z a e z = 0 , | ph z | 1 2 π δ ( < 1 2 π ),
4.4.18 lim n ( 1 + 1 n ) n = e .
16: Mathematical Introduction
( a , b ] or [ a , b ) half-closed intervals.
lim inf least limit point.
17: 4.17 Special Values and Limits
§4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
4.17.1 lim z 0 sin z z = 1 ,
4.17.2 lim z 0 tan z z = 1 .
4.17.3 lim z 0 1 cos z z 2 = 1 2 .
18: 28.34 Methods of Computation
  • (b)

    Representations for w I ( π ; a , ± q ) with limit formulas for special solutions of the recurrence relations §28.4(ii) for fixed a and q ; see Schäfke (1961a).

  • 19: 14.24 Analytic Continuation
    the limiting value being taken in (14.24.1) when 2 ν is an odd integer. … the limiting value being taken in (14.24.4) when μ . …
    20: 29.5 Special Cases and Limiting Forms
    §29.5 Special Cases and Limiting Forms
    29.5.4 lim k 1 a ν m ( k 2 ) = lim k 1 b ν m + 1 ( k 2 ) = ν ( ν + 1 ) μ 2 ,
    29.5.5 lim k 1 𝐸𝑐 ν m ( z , k 2 ) 𝐸𝑐 ν m ( 0 , k 2 ) = lim k 1 𝐸𝑠 ν m + 1 ( z , k 2 ) 𝐸𝑠 ν m + 1 ( 0 , k 2 ) = 1 ( cosh z ) μ F ( 1 2 μ 1 2 ν , 1 2 μ + 1 2 ν + 1 2 1 2 ; tanh 2 z ) , m even,
    lim 𝐸𝑐 ν m ( z , k 2 ) = ce m ( 1 2 π z , θ ) ,
    lim 𝐸𝑠 ν m ( z , k 2 ) = se m ( 1 2 π z , θ ) ,