About the Project

large variable and/or large parameter

AdvancedHelp

(0.004 seconds)

51—60 of 125 matching pages

51: 2.5 Mellin Transform Methods
where J ν denotes the Bessel function (§10.2(ii)), and x is a large positive parameter. …
52: 8.13 Zeros
For information on the distribution and computation of zeros of γ ( a , λ a ) and Γ ( a , λ a ) in the complex λ -plane for large values of the positive real parameter a see Temme (1995a). …
53: Bibliography K
  • U. J. Knottnerus (1960) Approximation Formulae for Generalized Hypergeometric Functions for Large Values of the Parameters. J. B. Wolters, Groningen.
  • 54: 10.20 Uniform Asymptotic Expansions for Large Order
    10.20.5 Y ν ( ν z ) ( 4 ζ 1 z 2 ) 1 4 ( Bi ( ν 2 3 ζ ) ν 1 3 k = 0 A k ( ζ ) ν 2 k + Bi ( ν 2 3 ζ ) ν 5 3 k = 0 B k ( ζ ) ν 2 k ) ,
    10.20.9 H ν ( 1 ) ( ν z ) H ν ( 2 ) ( ν z ) } 4 e 2 π i / 3 z ( 1 z 2 4 ζ ) 1 4 ( e 2 π i / 3 Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 4 3 k = 0 C k ( ζ ) ν 2 k + Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 2 3 k = 0 D k ( ζ ) ν 2 k ) ,
    55: 28.34 Methods of Computation
  • (b)

    Use of asymptotic expansions and approximations for large q (§§28.8(i), 28.16). See also Zhang and Jin (1996, pp. 482–485).

  • (b)

    Use of asymptotic expansions and approximations for large q (§§28.8(ii)28.8(iv)).

  • (b)

    Direct numerical integration (§3.7) of the differential equation (28.20.1) for moderate values of the parameters.

  • (c)

    Use of asymptotic expansions for large z or large q . See §§28.25 and 28.26.

  • 56: 13.19 Asymptotic Expansions for Large Argument
    §13.19 Asymptotic Expansions for Large Argument
    13.19.2 M κ , μ ( z ) Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) e 1 2 z z κ s = 0 ( 1 2 μ + κ ) s ( 1 2 + μ + κ ) s s ! z s + Γ ( 1 + 2 μ ) Γ ( 1 2 + μ + κ ) e 1 2 z ± ( 1 2 + μ κ ) π i z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , 1 2 π + δ ± ph z 3 2 π δ ,
    provided that both μ κ 1 2 , 3 2 , . … For an asymptotic expansion of W κ , μ ( z ) as z that is valid in the sector | ph z | π δ and where the real parameters κ , μ are subject to the growth conditions κ = o ( z ) , μ = o ( z ) , see Wong (1973a).
    57: 10.67 Asymptotic Expansions for Large Argument
    §10.67 Asymptotic Expansions for Large Argument
    §10.67(i) ber ν x , bei ν x , ker ν x , kei ν x , and Derivatives
    10.67.1 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) ,
    §10.67(ii) Cross-Products and Sums of Squares in the Case ν = 0
    58: 10.70 Zeros
    §10.70 Zeros
    Asymptotic approximations for large zeros are as follows. …
    10.70.1 μ 1 16 t + μ 1 32 t 2 + ( μ 1 ) ( 5 μ + 19 ) 1536 t 3 + 3 ( μ 1 ) 2 512 t 4 + .
    If m is a large positive integer, then
    zeros of  ber ν x 2 ( t f ( t ) ) , t = ( m 1 2 ν 3 8 ) π ,
    59: 10.19 Asymptotic Expansions for Large Order
    §10.19 Asymptotic Expansions for Large Order
    §10.19(i) Asymptotic Forms
    §10.19(ii) Debye’s Expansions
    §10.19(iii) Transition Region
    See also §10.20(i).
    60: 10.40 Asymptotic Expansions for Large Argument