About the Project

large μ

AdvancedHelp

(0.001 seconds)

21—30 of 157 matching pages

21: 10.40 Asymptotic Expansions for Large Argument
§10.40 Asymptotic Expansions for Large Argument
Products
ν -Derivative
§10.40(iv) Exponentially-Improved Expansions
22: 11.13 Methods of Computation
Although the power-series expansions (11.2.1) and (11.2.2), and the Bessel-function expansions of §11.4(iv) converge for all finite values of z , they are cumbersome to use when | z | is large owing to slowness of convergence and cancellation. For large | z | and/or | ν | the asymptotic expansions given in §11.6 should be used instead. … Then from the limiting forms for small argument (§§11.2(i), 10.7(i), 10.30(i)), limiting forms for large argument (§§11.6(i), 10.7(ii), 10.30(ii)), and the connection formulas (11.2.5) and (11.2.6), it is seen that 𝐇 ν ( x ) and 𝐋 ν ( x ) can be computed in a stable manner by integrating forwards, that is, from the origin toward infinity. The solution 𝐊 ν ( x ) needs to be integrated backwards for small x , and either forwards or backwards for large x depending whether or not ν exceeds 1 2 . …
23: 28.34 Methods of Computation
  • (b)

    Use of asymptotic expansions and approximations for large q (§§28.8(i), 28.16). See also Zhang and Jin (1996, pp. 482–485).

  • (b)

    Use of asymptotic expansions and approximations for large q (§§28.8(ii)28.8(iv)).

  • (c)

    Use of asymptotic expansions for large z or large q . See §§28.25 and 28.26.

  • 24: 29.16 Asymptotic Expansions
    The approximations for Lamé polynomials hold uniformly on the rectangle 0 z K , 0 z K , when n k and n k assume large real values. …
    25: 33.10 Limiting Forms for Large ρ or Large | η |
    §33.10 Limiting Forms for Large ρ or Large | η |
    §33.10(i) Large ρ
    §33.10(ii) Large Positive η
    §33.10(iii) Large Negative η
    26: Ronald F. Boisvert
    He is also Editor at Large for the DLMF Project. …
    27: 28.26 Asymptotic Approximations for Large q
    §28.26 Asymptotic Approximations for Large q
    §28.26(ii) Uniform Approximations
    28: 12.11 Zeros
    §12.11(ii) Asymptotic Expansions of Large Zeros
    When a > 1 2 the zeros are asymptotically given by z a , s and z a , s ¯ , where s is a large positive integer and …
    §12.11(iii) Asymptotic Expansions for Large Parameter
    For large negative values of a the real zeros of U ( a , x ) , U ( a , x ) , V ( a , x ) , and V ( a , x ) can be approximated by reversion of the Airy-type asymptotic expansions of §§12.10(vii) and 12.10(viii). …
    29: 28.8 Asymptotic Expansions for Large q
    §28.8 Asymptotic Expansions for Large q
    §28.8(ii) Sips’ Expansions
    §28.8(iii) Goldstein’s Expansions
    Barrett’s Expansions
    30: Bibliography O
  • A. B. Olde Daalhuis (2003a) Uniform asymptotic expansions for hypergeometric functions with large parameters. I. Analysis and Applications (Singapore) 1 (1), pp. 111–120.
  • A. B. Olde Daalhuis (2003b) Uniform asymptotic expansions for hypergeometric functions with large parameters. II. Analysis and Applications (Singapore) 1 (1), pp. 121–128.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1952) Some new asymptotic expansions for Bessel functions of large orders. Proc. Cambridge Philos. Soc. 48 (3), pp. 414–427.
  • F. W. J. Olver (1962) Tables for Bessel Functions of Moderate or Large Orders. National Physical Laboratory Mathematical Tables, Vol. 6. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.