About the Project

large%20b

AdvancedHelp

(0.003 seconds)

21—24 of 24 matching pages

21: 18.39 Applications in the Physical Sciences
The solutions of (18.39.8) are subject to boundary conditions at a and b . … argument b) The Morse Oscillator …
b) The Bohr Quantum Number
Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. … a) Shizgal (2015), b) Blackmore et al. (1986), c) Gammaitoni et al. (1998), d) Liboff (2003). …
22: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • W. Gautschi (1959a) Exponential integral 1 e x t t n 𝑑 t for large values of n . J. Res. Nat. Bur. Standards 62, pp. 123–125.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • GSL (free C library) GNU Scientific Library The GNU Project.
  • 23: Bibliography P
  • R. B. Paris and A. D. Wood (1995) Stokes phenomenon demystified. Bull. Inst. Math. Appl. 31 (1-2), pp. 21–28.
  • R. B. Paris (2002c) Exponential asymptotics of the Mittag-Leffler function. Proc. Roy. Soc. London Ser. A 458, pp. 3041–3052.
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • M. Petkovšek, H. S. Wilf, and D. Zeilberger (1996) A = B . A K Peters Ltd., Wellesley, MA.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • 24: 18.40 Methods of Computation
    Usually, however, other methods are more efficient, especially the numerical solution of difference equations (§3.6) and the application of uniform asymptotic expansions (when available) for OP’s of large degree. … Given the power moments, μ n = a b x n d μ ( x ) , n = 0 , 1 , 2 , , can these be used to find a unique μ ( x ) , a non-decreasing, real, function of x , in the case that the moment problem is determined? Should a unique solution not exist the moment problem is then indeterminant. … In what follows we consider only the simple, illustrative, case that μ ( x ) is continuously differentiable so that d μ ( x ) = w ( x ) d x , with w ( x ) real, positive, and continuous on a real interval [ a , b ] . The strategy will be to: 1) use the moments to determine the recursion coefficients α n , β n of equations (18.2.11_5) and (18.2.11_8); then, 2) to construct the quadrature abscissas x i and weights (or Christoffel numbers) w i from the J-matrix of §3.5(vi), equations (3.5.31) and(3.5.32). … Let x ( a , b ) . …Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . …