About the Project

inversion numbers

AdvancedHelp

(0.002 seconds)

21—30 of 49 matching pages

21: 24.13 Integrals
β–Ί
24.13.4 0 1 / 2 B n ⁑ ( t ) ⁒ d t = 1 2 n + 1 2 n ⁒ B n + 1 n + 1 ,
β–Ί
24.13.5 1 / 4 3 / 4 B n ⁑ ( t ) ⁒ d t = E n 2 2 ⁒ n + 1 .
β–Ί
24.13.6 0 1 B n ⁑ ( t ) ⁒ B m ⁑ ( t ) ⁒ d t = ( 1 ) n 1 ⁒ m ! ⁒ n ! ( m + n ) ! ⁒ B m + n .
β–Ί
24.13.8 0 1 E n ⁑ ( t ) ⁒ d t = 2 ⁒ E n + 1 ⁑ ( 0 ) n + 1 = 4 ⁒ ( 2 n + 2 1 ) ( n + 1 ) ⁒ ( n + 2 ) ⁒ B n + 2 ,
β–ΊFor Laplace and inverse Laplace transforms see Prudnikov et al. (1992a, §§3.28.1–3.28.2) and Prudnikov et al. (1992b, §§3.26.1–3.26.2). …
22: 1.1 Special Notation
β–Ί β–Ίβ–Ίβ–Ί
x , y real variables.
𝐀 1 inverse of the square matrix 𝐀
β–ΊIn the physics, applied maths, and engineering literature a common alternative to a ¯ is a , a being a complex number or a matrix; the Hermitian conjugate of 𝐀 is usually being denoted 𝐀 .
23: 1.13 Differential Equations
β–Ίwhere z D , a simply-connected domain, and f ⁑ ( z ) , g ⁑ ( z ) are analytic in D , has an infinite number of analytic solutions in D . … β–ΊAs the interval [ a , b ] is mapped, one-to-one, onto [ 0 , c ] by the above definition of t , the integrand being positive, the inverse of this same transformation allows q ^ ⁑ ( t ) to be calculated from p , q , ρ in (1.13.31), p , ρ C 2 ⁑ ( a , b ) and q C ⁑ ( a , b ) . β–ΊFor a regular Sturm-Liouville system, equations (1.13.26) and (1.13.29) have: (i) identical eigenvalues, Ξ» ; (ii) the corresponding (real) eigenfunctions, u ⁑ ( x ) and w ⁑ ( t ) , have the same number of zeros, also called nodes, for t ( 0 , c ) as for x ( a , b ) ; (iii) the eigenfunctions also satisfy the same type of boundary conditions, un-mixed or periodic, for both forms at the corresponding boundary points. …
24: 1.14 Integral Transforms
β–Ί
Inversion
β–Ί
Inversion
β–Ί
Inversion
β–Ί
Inversion
β–Ί
Inversion
25: 25.11 Hurwitz Zeta Function
β–Ί
25.11.22 ΢ ⁑ ( 1 2 ⁒ n , 1 2 ) = B 2 ⁒ n ⁒ ln ⁑ 2 n 4 n ( 2 2 ⁒ n 1 1 ) ⁒ ΢ ⁑ ( 1 2 ⁒ n ) 2 2 ⁒ n 1 , n = 1 , 2 , 3 , .
β–Ί
25.11.23 ΞΆ ⁑ ( 1 2 ⁒ n , 1 3 ) = Ο€ ⁒ ( 9 n 1 ) ⁒ B 2 ⁒ n 8 ⁒ n ⁒ 3 ⁒ ( 3 2 ⁒ n 1 1 ) B 2 ⁒ n ⁒ ln ⁑ 3 4 ⁒ n 3 2 ⁒ n 1 ( 1 ) n ⁒ ψ ( 2 ⁒ n 1 ) ⁑ ( 1 3 ) 2 ⁒ 3 ⁒ ( 6 ⁒ Ο€ ) 2 ⁒ n 1 ( 3 2 ⁒ n 1 1 ) ⁒ ΞΆ ⁑ ( 1 2 ⁒ n ) 2 3 2 ⁒ n 1 , n = 1 , 2 , 3 , .
β–Ί
25.11.32 0 a x n ⁒ ψ ⁑ ( x ) ⁒ d x = ( 1 ) n 1 ⁒ ΢ ⁑ ( n ) + ( 1 ) n ⁒ H n ⁒ B n + 1 n + 1 k = 0 n ( 1 ) k ⁒ ( n k ) ⁒ H k ⁒ B k + 1 ⁒ ( a ) k + 1 ⁒ a n k + k = 0 n ( 1 ) k ⁒ ( n k ) ⁒ ΢ ⁑ ( k , a ) ⁒ a n k , n = 1 , 2 , , ⁑ a > 0 ,
β–Ίwhere H n are the harmonic numbers: β–Ί
25.11.33 H n = k = 1 n k 1 .
26: Bibliography C
β–Ί
  • L. Carlitz (1953) Some congruences for the Bernoulli numbers. Amer. J. Math. 75 (1), pp. 163–172.
  • β–Ί
  • L. Carlitz (1963) The inverse of the error function. Pacific J. Math. 13 (2), pp. 459–470.
  • β–Ί
  • B. C. Carlson (2005) Jacobian elliptic functions as inverses of an integral. J. Comput. Appl. Math. 174 (2), pp. 355–359.
  • β–Ί
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.
  • β–Ί
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • 27: 18.40 Methods of Computation
    β–Ί
    §18.40(ii) The Classical Moment Problem
    β–ΊHaving now directly connected computation of the quadrature abscissas and weights to the moments, what follows uses these for a Stieltjes–Perron inversion to regain w ⁑ ( x ) . β–Ί
    Stieltjes Inversion via (approximate) Analytic Continuation
    β–Ί
    Histogram Approach
    β–Ί
    Derivative Rule Approach
    28: 30.15 Signal Analysis
    β–ΊThe maximum (or least upper bound) B of all numbersβ–Ί
    30.15.11 arccos ⁑ B + arccos ⁑ Ξ± = arccos ⁑ Ξ› 0 ,
    29: Bibliography W
    β–Ί
  • E. L. Wachspress (2000) Evaluating elliptic functions and their inverses. Comput. Math. Appl. 39 (3-4), pp. 131–136.
  • β–Ί
  • S. S. Wagstaff (2002) Prime Divisors of the Bernoulli and Euler Numbers. In Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 357–374.
  • β–Ί
  • G. N. Watson (1935a) Generating functions of class-numbers. Compositio Math. 1, pp. 39–68.
  • 30: 19.20 Special Cases
    β–Ί Schneider that this is a transcendental number. … β–Ί
    19.20.5 2 ⁒ R G ⁑ ( x , y , y ) = y ⁒ R C ⁑ ( x , y ) + x .
    β–Ί
    19.20.13 2 ⁒ ( p x ) ⁒ R J ⁑ ( x , y , z , p ) = 3 ⁒ R F ⁑ ( x , y , z ) 3 ⁒ x ⁒ R C ⁑ ( y ⁒ z , p 2 ) , p = x ± ( y x ) ⁒ ( z x ) ,
    β–ΊWhen the variables are real and distinct, the various cases of R J ⁑ ( x , y , z , p ) are called circular (hyperbolic) cases if ( p x ) ⁒ ( p y ) ⁒ ( p z ) is positive (negative), because they typically occur in conjunction with inverse circular (hyperbolic) functions. … β–Ί Schneider that this is a transcendental number. …