About the Project

integrals of modified Bessel functions

AdvancedHelp

(0.023 seconds)

11—20 of 61 matching pages

11: 13.16 Integral Representations
13.16.2 M κ , μ ( z ) = Γ ( 1 + 2 μ ) z λ Γ ( 1 + 2 μ 2 λ ) Γ ( 2 λ ) 0 1 M κ λ , μ λ ( z t ) e 1 2 z ( t 1 ) t μ λ 1 2 ( 1 t ) 2 λ 1 d t , μ + 1 2 > λ > 0 ,
13.16.4 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = z e 1 2 z Γ ( 1 2 + μ κ ) 0 e t t κ 1 2 I 2 μ ( 2 z t ) d t , ( κ μ ) 1 2 < 0 .
13.16.8 W κ , μ ( z ) = 2 z e 1 2 z Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) 0 e t t κ 1 2 K 2 μ ( 2 z t ) d t , ( μ κ ) + 1 2 > 0 ,
12: Bibliography P
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • 13: 13.4 Integral Representations
    13.4.6 U ( a , b , z ) = ( 1 ) n z 1 b n Γ ( 1 + a b ) 0 𝐌 ( b a , b , t ) e t t b + n 1 t + z d t , | ph z | < π , n = 0 , 1 , 2 , , b < n < 1 + ( a b ) ,
    13.4.7 U ( a , b , z ) = 2 z 1 2 1 2 b Γ ( a ) Γ ( a b + 1 ) 0 e t t a 1 2 b 1 2 K b 1 ( 2 z t ) d t , a > max ( b 1 , 0 ) ,
    14: 9.12 Scorer Functions
    If ζ = 2 3 z 3 / 2 or 2 3 x 3 / 2 , and K 1 / 3 is the modified Bessel function10.25(ii)), then
    9.12.22 Hi ( z ) = 4 z 2 3 3 / 2 π 2 0 K 1 / 3 ( t ) ζ 2 + t 2 d t , | ph z | < 1 3 π ,
    9.12.23 Gi ( x ) = 4 x 2 3 3 / 2 π 2 0 K 1 / 3 ( t ) ζ 2 t 2 d t , x > 0 ,
    15: 10.22 Integrals
    10.22.52 0 J ν ( b t ) exp ( p 2 t 2 ) d t = π 2 p exp ( b 2 8 p 2 ) I ν / 2 ( b 2 8 p 2 ) , ν > 1 , ( p 2 ) > 0 ,
    10.22.53 0 Y 2 ν ( b t ) exp ( p 2 t 2 ) d t = π 2 p exp ( b 2 8 p 2 ) ( I ν ( b 2 8 p 2 ) tan ( ν π ) + 1 π K ν ( b 2 8 p 2 ) sec ( ν π ) ) , | ν | < 1 2 , ( p 2 ) > 0 .
    10.22.67 0 t exp ( p 2 t 2 ) J ν ( a t ) J ν ( b t ) d t = 1 2 p 2 exp ( a 2 + b 2 4 p 2 ) I ν ( a b 2 p 2 ) , ν > 1 , ( p 2 ) > 0 .
    10.22.68 0 t exp ( p 2 t 2 ) J 0 ( a t ) Y 0 ( a t ) d t = 1 2 π p 2 exp ( a 2 2 p 2 ) K 0 ( a 2 2 p 2 ) , ( p 2 ) > 0 .
    Additional infinite integrals over the product of three Bessel functions (including modified Bessel functions) are given in Gervois and Navelet (1984, 1985a, 1985b, 1986a, 1986b). …
    16: Bibliography G
  • R. E. Gaunt (2014) Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420 (1), pp. 373–386.
  • A. Gervois and H. Navelet (1986a) Some integrals involving three modified Bessel functions. I. J. Math. Phys. 27 (3), pp. 682–687.
  • A. Gervois and H. Navelet (1986b) Some integrals involving three modified Bessel functions. II. J. Math. Phys. 27 (3), pp. 688–695.
  • 17: 6.7 Integral Representations
    6.7.15 f ( z ) = 2 0 K 0 ( 2 z t ) cos t d t ,
    6.7.16 g ( z ) = 2 0 K 0 ( 2 z t ) sin t d t .
    18: 10.9 Integral Representations
    19: 10.21 Zeros
    10.21.18 d c d ν = 2 c c 2 ν 2 0 ( c 2 cosh ( 2 t ) ν 2 ) K 0 ( 2 c sinh t ) e 2 ν t d t ,
    20: 28.28 Integrals, Integral Representations, and Integral Equations
    28.28.23 2 π 0 π 𝒞 2 + 2 ( j ) ( 2 h R ) sin ( ( 2 + 2 ) ϕ ) se 2 m + 2 ( t , h 2 ) d t = ( 1 ) + m B 2 + 2 2 m + 2 ( h 2 ) Ms 2 m + 2 ( j ) ( z , h ) .