About the Project

integral equations and representations

AdvancedHelp

(0.007 seconds)

21—30 of 92 matching pages

21: Bibliography G
  • B. Gambier (1910) Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est a points critiques fixes. Acta Math. 33 (1), pp. 1–55.
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • A. Gil, J. Segura, and N. M. Temme (2004c) Integral representations for computing real parabolic cylinder functions. Numer. Math. 98 (1), pp. 105–134.
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • É. Goursat (1881) Sur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique. Ann. Sci. École Norm. Sup. (2) 10, pp. 3–142 (French).
  • 22: 13.27 Mathematical Applications
    Confluent hypergeometric functions are connected with representations of the group of third-order triangular matrices. …Vilenkin (1968, Chapter 8) constructs irreducible representations of this group, in which the diagonal matrices correspond to operators of multiplication by an exponential function. The other group elements correspond to integral operators whose kernels can be expressed in terms of Whittaker functions. … For applications of Whittaker functions to the uniform asymptotic theory of differential equations with a coalescing turning point and simple pole see §§2.8(vi) and 18.15(i).
    23: 25.11 Hurwitz Zeta Function
    §25.11(iii) Representations by the Euler–Maclaurin Formula
    §25.11(iv) Series Representations
    §25.11(vii) Integral Representations
    §25.11(viii) Further Integral Representations
    §25.11(x) Further Series Representations
    24: 19.16 Definitions
    §19.16(i) Symmetric Integrals
    §19.16(ii) R a ( 𝐛 ; 𝐳 )
    For generalizations and further information, especially representation of the R -function as a Dirichlet average, see Carlson (1977b). … Each of the four complete integrals (19.16.20)–(19.16.23) can be integrated to recover the incomplete integral: …
    25: 1.17 Integral and Series Representations of the Dirac Delta
    §1.17 Integral and Series Representations of the Dirac Delta
    §1.17(ii) Integral Representations
    Then comparison of (1.17.2) and (1.17.9) yields the formal integral representation
    Sine and Cosine Functions
    Coulomb Functions (§33.14(iv))
    26: 22.10 Maclaurin Series
    Further terms may be derived from the differential equations (22.13.13), (22.13.14), (22.13.15), or from the integral representations of the inverse functions in §22.15(ii). …
    27: 5.9 Integral Representations
    §5.9 Integral Representations
    Binet’s Formula
    §5.9(ii) Psi Function, Euler’s Constant, and Derivatives
    28: Bibliography V
  • N. Ja. Vilenkin and A. U. Klimyk (1991) Representation of Lie Groups and Special Functions. Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 72, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin and A. U. Klimyk (1993) Representation of Lie Groups and Special Functions. Volume 2: Class I Representations, Special Functions, and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 74, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin (1968) Special Functions and the Theory of Group Representations. American Mathematical Society, Providence, RI.
  • H. Volkmer (1984) Integral representations for products of Lamé functions by use of fundamental solutions. SIAM J. Math. Anal. 15 (3), pp. 559–569.
  • H. Volkmer (2021) Fourier series representation of Ferrers function 𝖯 .
  • 29: 15.17 Mathematical Applications
    §15.17(i) Differential Equations
    The logarithmic derivatives of some hypergeometric functions for which quadratic transformations exist (§15.8(iii)) are solutions of Painlevé equations. … …
    §15.17(iii) Group Representations
    These monodromy groups are finite iff the solutions of Riemann’s differential equation are all algebraic. …
    30: 6.7 Integral Representations
    §6.7 Integral Representations
    §6.7(ii) Sine and Cosine Integrals
    §6.7(iii) Auxiliary Functions
    For collections of integral representations see Bierens de Haan (1939, pp. 56–59, 72–73, 82–84, 121, 133–136, 155, 179–181, 223, 225–227, 230, 259–260, 374, 377, 397–398, 408, 416, 424, 431, 438–439, 442–444, 488, 496–500, 567–571, 585, 602, 638, 675–677), Corrington (1961), Erdélyi et al. (1954a, vol. 1, pp. 267–270), Geller and Ng (1969), Nielsen (1906b), Oberhettinger (1974, pp. 244–246), Oberhettinger and Badii (1973, pp. 364–371), and Watrasiewicz (1967).