About the Project

integral%20equation%20for%20Lam%C3%A9%20functions

AdvancedHelp

(0.006 seconds)

21—30 of 989 matching pages

21: 28 Mathieu Functions and Hill’s Equation
Chapter 28 Mathieu Functions and Hill’s Equation
22: 25.12 Polylogarithms
The right-hand side is called Clausen’s integral. …
Integral Representation
§25.12(iii) Fermi–Dirac and Bose–Einstein Integrals
The Fermi–Dirac and Bose–Einstein integrals are defined by … In terms of polylogarithms …
23: 8.17 Incomplete Beta Functions
§8.17 Incomplete Beta Functions
Addendum: For a companion equation see (8.17.24). …
§8.17(ii) Hypergeometric Representations
§8.17(iii) Integral Representation
Further integral representations can be obtained by combining the results given in §8.17(ii) with §15.6. …
24: 9.18 Tables
  • Zhang and Jin (1996, p. 337) tabulates Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) for x = 0 ( 1 ) 20 to 8S and for x = 20 ( 1 ) 0 to 9D.

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 ; 8D.

  • §9.18(v) Integrals
    25: 6.20 Approximations
  • Hastings (1955) gives several minimax polynomial and rational approximations for E 1 ( x ) + ln x , x e x E 1 ( x ) , and the auxiliary functions f ( x ) and g ( x ) . These are included in Abramowitz and Stegun (1964, Ch. 5).

  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ( x ) , with accuracies up to 20S.

  • Cody and Thacher (1969) provides minimax rational approximations for Ei ( x ) , with accuracies up to 20S.

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • Luke (1969b, pp. 41–42) gives Chebyshev expansions of Ein ( a x ) , Si ( a x ) , and Cin ( a x ) for 1 x 1 , a . The coefficients are given in terms of series of Bessel functions.

  • 26: 25.11 Hurwitz Zeta Function
    §25.11 Hurwitz Zeta Function
    The Riemann zeta function is a special case: …
    §25.11(vii) Integral Representations
    §25.11(viii) Further Integral Representations
    §25.11(ix) Integrals
    27: Peter L. Walker
    Walker’s books are An Introduction to Complex Analysis, published by Hilger in 1974, The Theory of Fourier Series and Integrals, published by Wiley in 1986, Elliptic Functions. A Constructive Approach, published by Wiley in 1996, and Examples and Theorems in Analysis, published by Springer in 2004. …
  • 28: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • National Bureau of Standards (1958) Integrals of Airy Functions. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 29: 36.5 Stokes Sets
    §36.5(ii) Cuspoids
    where u satisfies the equation
    §36.5(iii) Umbilics
    §36.5(iv) Visualizations
    Red and blue numbers in each region correspond, respectively, to the numbers of real and complex critical points that contribute to the asymptotics of the canonical integral away from the bifurcation sets. …
    30: 7.8 Inequalities
    §7.8 Inequalities
    7.8.5 x 2 2 x 2 + 1 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 x 𝖬 ( x ) < 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 < x 2 + 1 2 x 2 + 3 , x 0 .
    7.8.7 sinh x 2 x < e x 2 F ( x ) = 0 x e t 2 d t < e x 2 1 x , x > 0 .
    The function F ( x ) / 1 e 2 x 2 is strictly decreasing for x > 0 . For these and similar results for Dawson’s integral F ( x ) see Janssen (2021). …