About the Project

integer order

AdvancedHelp

(0.002 seconds)

21—30 of 179 matching pages

21: 11.11 Asymptotic Expansions of Anger–Weber Functions
11.11.2 𝐉 ν ( z ) J ν ( z ) + sin ( π ν ) π z ( k = 0 F k ( ν ) z 2 k ν z k = 0 G k ( ν ) z 2 k ) ,
11.11.3 𝐄 ν ( z ) Y ν ( z ) 1 + cos ( π ν ) π z k = 0 F k ( ν ) z 2 k ν ( 1 cos ( π ν ) ) π z 2 k = 0 G k ( ν ) z 2 k ,
11.11.8 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ ,
11.11.10 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ .
22: 10.60 Sums
For collections of sums of series relevant to spherical Bessel functions or Bessel functions of half odd integer order see Erdélyi et al. (1953b, pp. 43–45 and 98–105), Gradshteyn and Ryzhik (2000, §§8.51, 8.53), Hansen (1975), Magnus et al. (1966, pp. 106–108 and 123–138), and Prudnikov et al. (1986b, pp. 635–637 and 651–700). …
23: Bibliography D
  • C. F. du Toit (1993) Bessel functions J n ( z ) and Y n ( z ) of integer order and complex argument. Comput. Phys. Comm. 78 (1-2), pp. 181–189.
  • 24: 28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
    For further power series of Mathieu radial functions of integer order for small parameters and improved convergence rate see Larsen et al. (2009).
    25: 28.12 Definitions and Basic Properties
    26: 11.6 Asymptotic Expansions
    11.6.1 𝐊 ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | π δ ,
    11.6.2 𝐌 ν ( z ) 1 π k = 0 ( 1 ) k + 1 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | 1 2 π δ .
    11.6.6 𝐊 ν ( λ ν ) ( 1 2 λ ν ) ν 1 π Γ ( ν + 1 2 ) k = 0 k ! c k ( λ ) ν k , | ph ν | 1 2 π δ ,
    11.6.7 𝐌 ν ( λ ν ) ( 1 2 λ ν ) ν 1 π Γ ( ν + 1 2 ) k = 0 k ! c k ( i λ ) ν k , | ph ν | 1 2 π δ .
    27: 11.9 Lommel Functions
    11.9.3 s μ , ν ( z ) = z μ + 1 k = 0 ( 1 ) k z 2 k a k + 1 ( μ , ν ) ,
    11.9.4 a k ( μ , ν ) = m = 1 k ( ( μ + 2 m 1 ) 2 ν 2 ) = 4 k ( μ ν + 1 2 ) k ( μ + ν + 1 2 ) k , k = 0 , 1 , 2 , .
    11.9.7 s μ , ν ( z ) = 2 μ + 1 k = 0 ( 2 k + μ + 1 ) Γ ( k + μ + 1 ) k ! ( 2 k + μ ν + 1 ) ( 2 k + μ + ν + 1 ) J 2 k + μ + 1 ( z ) ,
    11.9.8 s μ , ν ( z ) = 2 ( μ + ν 1 ) / 2 Γ ( 1 2 μ + 1 2 ν + 1 2 ) z ( μ + 1 ν ) / 2 k = 0 ( 1 2 z ) k k ! ( 2 k + μ ν + 1 ) J k + 1 2 ( μ + ν + 1 ) ( z ) .
    11.9.9 S μ , ν ( z ) z μ 1 k = 0 ( 1 ) k a k ( μ , ν ) z 2 k , z , | ph z | π δ ( < π ) .
    28: 14.1 Special Notation
    x , y , τ real variables.
    m , n unless stated otherwise, nonnegative integers, used for order and degree, respectively.
    29: 28.28 Integrals, Integral Representations, and Integral Equations
    §28.28(iv) Integrals of Products of Mathieu Functions of Integer Order
    30: 14.16 Zeros
    Throughout this section we assume that μ and ν are real, and when they are not integers we write …where m , n and δ μ , δ ν ( 0 , 1 ) . …
  • (a)

    μ > 0 , μ > ν , μ , and sin ( ( μ ν ) π ) and sin ( μ π ) have opposite signs.

  • (b)

    μ ν , μ , and μ is odd.