About the Project

inhomogeneous%20forms

AdvancedHelp

(0.002 seconds)

21—30 of 343 matching pages

21: 11.10 Anger–Weber Functions
The Anger and Weber functions satisfy the inhomogeneous Bessel differential equation …
22: 25.12 Polylogarithms
25.12.2 Li 2 ( z ) = 0 z t 1 ln ( 1 t ) d t , z ( 1 , ) .
25.12.3 Li 2 ( z ) + Li 2 ( z z 1 ) = 1 2 ( ln ( 1 z ) ) 2 , z [ 1 , ) .
See accompanying text
Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
See accompanying text
Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
23: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … An equivalent form states that the n th prime p n (when the primes are listed in increasing order) is asymptotic to n ln n as n : …
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
24: 26.9 Integer Partitions: Restricted Number and Part Size
Table 26.9.1: Partitions p k ( n ) .
n k
8 0 1 5 10 15 18 20 21 22 22 22
Equations (26.9.2)–(26.9.3) are examples of closed forms that can be computed explicitly for any positive integer k . …
§26.9(iv) Limiting Form
25: 31.13 Asymptotic Approximations
For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). For asymptotic approximations of the solutions of confluent forms of Heun’s equation in the neighborhood of irregular singularities, see Komarov et al. (1976), Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik (1997), Slavyanov and Veshev (1997), and Lay et al. (1998).
26: 28.8 Asymptotic Expansions for Large q
28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
28.8.6 C ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 + 2 m + 1 8 h + m 4 + 2 m 3 + 263 m 2 + 262 m + 108 2048 h 2 + ) 1 / 2 ,
28.8.7 S ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 2 m + 1 8 h + m 4 + 2 m 3 121 m 2 122 m 84 2048 h 2 + ) 1 / 2 .
28.8.9 W m ± ( x ) = e ± 2 h sin x ( cos x ) m + 1 { ( cos ( 1 2 x + 1 4 π ) ) 2 m + 1 , ( sin ( 1 2 x + 1 4 π ) ) 2 m + 1 ,
28.8.11 P m ( x ) 1 + s 2 3 h cos 2 x + 1 h 2 ( s 4 + 86 s 2 + 105 2 11 cos 4 x s 4 + 22 s 2 + 57 2 11 cos 2 x ) + ,
27: 36.5 Stokes Sets
The Stokes set takes different forms for z = 0 , z < 0 , and z > 0 . …
36.5.4 80 x 5 40 x 4 55 x 3 + 5 x 2 + 20 x 1 = 0 ,
36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
28: 32.8 Rational Solutions
P II P VI  possess hierarchies of rational solutions for special values of the parameters which are generated from “seed solutions” using the Bäcklund transformations and often can be expressed in the form of determinants. …
Q 3 ( z ) = z 6 + 20 z 3 80 ,
These solutions have the formThere are also three families of solutions of P IV  of the formThese rational solutions have the form
29: 8 Incomplete Gamma and Related
Functions
30: 28 Mathieu Functions and Hill’s Equation