About the Project

inhomogeneous%20forms

AdvancedHelp

(0.001 seconds)

11—20 of 343 matching pages

11: 9.10 Integrals
β–Ί
9.10.1 z Ai ⁑ ( t ) ⁒ d t = Ο€ ⁒ ( Ai ⁑ ( z ) ⁒ Gi ⁑ ( z ) Ai ⁑ ( z ) ⁒ Gi ⁑ ( z ) ) ,
β–Ί
9.10.2 z Ai ⁑ ( t ) ⁒ d t = Ο€ ⁒ ( Ai ⁑ ( z ) ⁒ Hi ⁑ ( z ) Ai ⁑ ( z ) ⁒ Hi ⁑ ( z ) ) ,
β–Ί
9.10.3 z Bi ⁑ ( t ) ⁒ d t = 0 z Bi ⁑ ( t ) ⁒ d t = Ο€ ⁒ ( Bi ⁑ ( z ) ⁒ Gi ⁑ ( z ) Bi ⁑ ( z ) ⁒ Gi ⁑ ( z ) ) = Ο€ ⁒ ( Bi ⁑ ( z ) ⁒ Hi ⁑ ( z ) Bi ⁑ ( z ) ⁒ Hi ⁑ ( z ) ) .
12: Bibliography L
β–Ί
  • G. Labahn and M. Mutrie (1997) Reduction of Elliptic Integrals to Legendre Normal Form. Technical report Technical Report 97-21, Department of Computer Science, University of Waterloo, Waterloo, Ontario.
  • β–Ί
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright Ο‰ function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • β–Ί
  • Soo-Y. Lee (1980) The inhomogeneous Airy functions, Gi ⁒ ( z )  and Hi ⁒ ( z ) . J. Chem. Phys. 72 (1), pp. 332–336.
  • β–Ί
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • β–Ί
  • J. N. Lyness (1971) Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature. Math. Comp. 25 (113), pp. 87–104.
  • 13: 9.12 Scorer Functions
    β–Ί
    9.12.4 Gi ⁑ ( z ) = Bi ⁑ ( z ) ⁒ z Ai ⁑ ( t ) ⁒ d t + Ai ⁑ ( z ) ⁒ 0 z Bi ⁑ ( t ) ⁒ d t ,
    β–Ί
    9.12.5 Hi ⁑ ( z ) = Bi ⁑ ( z ) ⁒ z Ai ⁑ ( t ) ⁒ d t Ai ⁑ ( z ) ⁒ z Bi ⁑ ( t ) ⁒ d t .
    β–Ί
    9.12.6 Gi ⁑ ( 0 ) = 1 2 ⁒ Hi ⁑ ( 0 ) = 1 3 ⁒ Bi ⁑ ( 0 ) = 1 / ( 3 7 / 6 ⁒ Ξ“ ⁑ ( 2 3 ) ) = 0.20497 55424 ⁒ ,
    β–Ί
    9.12.7 Gi ⁑ ( 0 ) = 1 2 ⁒ Hi ⁑ ( 0 ) = 1 3 ⁒ Bi ⁑ ( 0 ) = 1 / ( 3 5 / 6 ⁒ Ξ“ ⁑ ( 1 3 ) ) = 0.14942 94524 ⁒ .
    β–Ί
    9.12.11 Gi ⁑ ( z ) + Hi ⁑ ( z ) = Bi ⁑ ( z ) ,
    14: Bibliography M
    β–Ί
  • H. Maass (1971) Siegel’s modular forms and Dirichlet series. Lecture Notes in Mathematics, Vol. 216, Springer-Verlag, Berlin.
  • β–Ί
  • A. J. MacLeod (1994) Computation of inhomogeneous Airy functions. J. Comput. Appl. Math. 53 (1), pp. 109–116.
  • β–Ί
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • β–Ί
  • P. Maroni (1995) An integral representation for the Bessel form. J. Comput. Appl. Math. 57 (1-2), pp. 251–260.
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 15: Bibliography B
    β–Ί
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • β–Ί
  • P. Baldwin (1991) Coefficient functions for an inhomogeneous turning-point problem. Mathematika 38 (2), pp. 217–238.
  • β–Ί
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • β–Ί
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • β–Ί
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • 16: 20 Theta Functions
    Chapter 20 Theta Functions
    17: 14.29 Generalizations
    β–ΊFor inhomogeneous versions of the associated Legendre equation, and properties of their solutions, see Babister (1967, pp. 252–264).
    18: 26.3 Lattice Paths: Binomial Coefficients
    β–Ί
    Table 26.3.1: Binomial coefficients ( m n ) .
    β–Ί β–Ίβ–Ίβ–Ί
    m n
    6 1 6 15 20 15 6 1
    β–Ί
    β–Ί
    Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
    β–Ί β–Ίβ–Ίβ–Ί
    m n
    3 1 4 10 20 35 56 84 120 165
    β–Ί
    β–Ί
    26.3.4 m = 0 ( m + n m ) ⁒ x m = 1 ( 1 x ) n + 1 , | x | < 1 .
    β–Ί
    §26.3(v) Limiting Form
    19: 25.20 Approximations
    β–Ί
  • Cody et al. (1971) gives rational approximations for ΞΆ ⁑ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • 20: 26.5 Lattice Paths: Catalan Numbers
    β–Ί
    Table 26.5.1: Catalan numbers.
    β–Ί β–Ίβ–Ίβ–Ί
    n C ⁑ ( n ) n C ⁑ ( n ) n C ⁑ ( n )
    6 132 13 7 42900 20 65641 20420
    β–Ί
    β–Ί
    §26.5(iv) Limiting Forms