About the Project

incomplete gamma functions

AdvancedHelp

(0.012 seconds)

11—20 of 68 matching pages

11: 8.4 Special Values
§8.4 Special Values
8.4.2 γ ( a , 0 ) = 1 Γ ( a + 1 ) ,
8.4.5 Γ ( 1 , z ) = e z ,
8.4.9 P ( n + 1 , z ) = 1 e z e n ( z ) ,
8.4.12 γ ( n , z ) = z n ,
12: 8.12 Uniform Asymptotic Expansions for Large Parameter
§8.12 Uniform Asymptotic Expansions for Large Parameter
8.12.3 P ( a , z ) = 1 2 erfc ( η a / 2 ) S ( a , η ) ,
8.12.4 Q ( a , z ) = 1 2 erfc ( η a / 2 ) + S ( a , η ) ,
For other uniform asymptotic approximations of the incomplete gamma functions in terms of the function erfc see Paris (2002b) and Dunster (1996a).
Inverse Function
13: 8.1 Special Notation
Unless otherwise indicated, primes denote derivatives with respect to the argument. The functions treated in this chapter are the incomplete gamma functions γ ( a , z ) , Γ ( a , z ) , γ ( a , z ) , P ( a , z ) , and Q ( a , z ) ; the incomplete beta functions B x ( a , b ) and I x ( a , b ) ; the generalized exponential integral E p ( z ) ; the generalized sine and cosine integrals si ( a , z ) , ci ( a , z ) , Si ( a , z ) , and Ci ( a , z ) . Alternative notations include: Prym’s functions P z ( a ) = γ ( a , z ) , Q z ( a ) = Γ ( a , z ) , Nielsen (1906a, pp. 25–26), Batchelder (1967, p. 63); ( a , z ) ! = γ ( a + 1 , z ) , [ a , z ] ! = Γ ( a + 1 , z ) , Dingle (1973); B ( a , b , x ) = B x ( a , b ) , I ( a , b , x ) = I x ( a , b ) , Magnus et al. (1966); Si ( a , x ) Si ( 1 a , x ) , Ci ( a , x ) Ci ( 1 a , x ) , Luke (1975).
14: 8 Incomplete Gamma and Related
Functions
Chapter 8 Incomplete Gamma and Related Functions
15: 8.5 Confluent Hypergeometric Representations
§8.5 Confluent Hypergeometric Representations
8.5.1 γ ( a , z ) = a 1 z a e z M ( 1 , 1 + a , z ) = a 1 z a M ( a , 1 + a , z ) , a 0 , 1 , 2 , .
8.5.2 γ ( a , z ) = e z 𝐌 ( 1 , 1 + a , z ) = 𝐌 ( a , 1 + a , z ) .
8.5.3 Γ ( a , z ) = e z U ( 1 a , 1 a , z ) = z a e z U ( 1 , 1 + a , z ) .
8.5.4 γ ( a , z ) = a 1 z 1 2 a 1 2 e 1 2 z M 1 2 a 1 2 , 1 2 a ( z ) .
16: 8.8 Recurrence Relations and Derivatives
§8.8 Recurrence Relations and Derivatives
8.8.1 γ ( a + 1 , z ) = a γ ( a , z ) z a e z ,
8.8.2 Γ ( a + 1 , z ) = a Γ ( a , z ) + z a e z .
8.8.12 Q ( a + n , z ) = Q ( a , z ) + z a e z k = 0 n 1 z k Γ ( a + k + 1 ) .
8.8.13 d d z γ ( a , z ) = d d z Γ ( a , z ) = z a 1 e z ,
17: 7.11 Relations to Other Functions
Incomplete Gamma Functions and Generalized Exponential Integral
18: 8.9 Continued Fractions
§8.9 Continued Fractions
8.9.1 Γ ( a + 1 ) e z γ ( a , z ) = 1 1 z a + 1 + z a + 2 ( a + 1 ) z a + 3 + 2 z a + 4 ( a + 2 ) z a + 5 + 3 z a + 6 , a 1 , 2 , ,
8.9.2 z a e z Γ ( a , z ) = z 1 1 + ( 1 a ) z 1 1 + z 1 1 + ( 2 a ) z 1 1 + 2 z 1 1 + ( 3 a ) z 1 1 + 3 z 1 1 + , | ph z | < π .
19: 8.10 Inequalities
§8.10 Inequalities
8.10.1 x 1 a e x Γ ( a , x ) 1 , x > 0 , 0 < a 1 ,
8.10.2 γ ( a , x ) x a 1 a ( 1 e x ) , x > 0 , 0 < a 1 .
Padé Approximants
8.10.13 Γ ( n , n ) Γ ( n ) < 1 2 < Γ ( n , n 1 ) Γ ( n ) , n = 1 , 2 , 3 , .
20: 8.26 Tables
§8.26(ii) Incomplete Gamma Functions
  • Pearson (1965) tabulates the function I ( u , p ) ( = P ( p + 1 , u ) ) for p = 1 ( .05 ) 0 ( .1 ) 5 ( .2 ) 50 , u = 0 ( .1 ) u p to 7D, where I ( u , u p ) rounds off to 1 to 7D; also I ( u , p ) for p = 0.75 ( .01 ) 1 , u = 0 ( .1 ) 6 to 5D.