About the Project

in terms of Bessel functions of variable order

AdvancedHelp

(0.017 seconds)

21—30 of 34 matching pages

21: 13.10 Integrals
Other formulas of this kind can be constructed by inversion of the differentiation formulas given in §13.3(ii). … For additional Hankel transforms and also other Bessel transforms see Erdélyi et al. (1954b, §8.18) and Oberhettinger (1972, §§1.16 and 3.4.42–46, 4.4.45–47, 5.94–97). … For integral transforms in terms of Whittaker functions see §13.23(iv). … Generalized orthogonality integrals (33.14.13) and (33.14.15) can be expressed in terms of Kummer functions via the definitions in that section.
22: 10.21 Zeros
§10.21(viii) Uniform Asymptotic Approximations for Large Order
This subsection describes the distribution in of the zeros of the principal branches of the Bessel functions of the second and third kinds, and their derivatives, in the case when the order is a positive integer n . … Higher coefficients in the asymptotic expansions in this subsection can be obtained by expressing the cross-products in terms of the modulus and phase functions10.18), and then reverting the asymptotic expansion for the difference of the phase functions. …
§10.21(xiv) ν -Zeros
23: 13.8 Asymptotic Approximations for Large Parameters
For fixed a and z in uniformly with respect to bounded positive values of x in each case. … where C ν ( a , ζ ) = cos ( π a ) J ν ( ζ ) + sin ( π a ) Y ν ( ζ ) and … where Γ ( a ) is the scaled gamma function defined in (5.11.3). These results follow from Temme (2022), which can also be used to obtain more terms in the expansions. …
24: Bibliography
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • Z. Altaç (1996) Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118 (3), pp. 789–792.
  • D. E. Amos (1985) A subroutine package for Bessel functions of a complex argument and nonnegative order. Technical Report Technical Report SAND85-1018, Sandia National Laboratories, Albuquerque, NM.
  • D. E. Amos (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Software 12 (3), pp. 265–273.
  • R. W. B. Ardill and K. J. M. Moriarty (1978) Spherical Bessel functions j n and y n of integer order and real argument. Comput. Phys. Comm. 14 (3-4), pp. 261–265.
  • 25: Bibliography S
  • L. Z. Salchev and V. B. Popov (1976) A property of the zeros of cross-product Bessel functions of different orders. Z. Angew. Math. Mech. 56 (2), pp. 120–121.
  • T. Shiota (1986) Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83 (2), pp. 333–382.
  • A. Sidi (1997) Computation of infinite integrals involving Bessel functions of arbitrary order by the D ¯ -transformation. J. Comput. Appl. Math. 78 (1), pp. 125–130.
  • C. L. Siegel (1973) Topics in Complex Function Theory. Vol. III: Abelian Functions and Modular Functions of Several Variables. Interscience Tracts in Pure and Applied Mathematics, No. 25, Wiley-Interscience, [John Wiley & Sons, Inc], New York-London-Sydney.
  • K. M. Siegel (1953) An inequality involving Bessel functions of argument nearly equal to their order. Proc. Amer. Math. Soc. 4 (6), pp. 858–859.
  • 26: Bibliography L
  • A. Laforgia and M. E. Muldoon (1983) Inequalities and approximations for zeros of Bessel functions of small order. SIAM J. Math. Anal. 14 (2), pp. 383–388.
  • L. Lorch (1992) On Bessel functions of equal order and argument. Rend. Sem. Mat. Univ. Politec. Torino 50 (2), pp. 209–216 (1993).
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
  • L. Lorch (1990) Monotonicity in terms of order of the zeros of the derivatives of Bessel functions. Proc. Amer. Math. Soc. 108 (2), pp. 387–389.
  • T. A. Lowdon (1970) Integral representation of the Hankel function in terms of parabolic cylinder functions. Quart. J. Mech. Appl. Math. 23 (3), pp. 315–327.
  • 27: 13.21 Uniform Asymptotic Approximations for Large κ
    with the variable ζ defined implicitly by … For the functions J 2 μ , Y 2 μ , H 2 μ ( 1 ) , and H 2 μ ( 2 ) see §10.2(ii), and for the env functions associated with J 2 μ and Y 2 μ see §2.8(iv). These approximations are proved in Dunster (1989). … These approximations are proved in Dunster (1989). … For a uniform asymptotic expansion in terms of Airy functions for W κ , μ ( 4 κ x ) when κ is large and positive, μ is real with | μ | bounded, and x [ δ , ) see Olver (1997b, Chapter 11, Ex. 7.3). …
    28: 11.6 Asymptotic Expansions
    §11.6(i) Large | z | , Fixed ν
    If the series on the right-hand side of (11.6.1) is truncated after m ( 0 ) terms, then the remainder term R m ( z ) is O ( z ν 2 m 1 ) . If ν is real, z is positive, and m + 1 2 ν 0 , then R m ( z ) is of the same sign and numerically less than the first neglected term. … For re-expansions of the remainder terms in (11.6.1) and (11.6.2), see Dingle (1973, p. 445). …
    §11.6(ii) Large | ν | , Fixed z
    29: Bibliography G
  • M. J. Gander and A. H. Karp (2001) Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quant. Spectrosc. Radiat. Transfer 68 (2), pp. 213–223.
  • A. Gil, J. Segura, and N. M. Temme (2002d) Evaluation of the modified Bessel function of the third kind of imaginary orders. J. Comput. Phys. 175 (2), pp. 398–411.
  • A. Gil, J. Segura, and N. M. Temme (2003a) Computation of the modified Bessel function of the third kind of imaginary orders: Uniform Airy-type asymptotic expansion. J. Comput. Appl. Math. 153 (1-2), pp. 225–234.
  • A. Gil, J. Segura, and N. M. Temme (2004a) Algorithm 831: Modified Bessel functions of imaginary order and positive argument. ACM Trans. Math. Software 30 (2), pp. 159–164.
  • A. Gil, J. Segura, and N. M. Temme (2004b) Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments. ACM Trans. Math. Software 30 (2), pp. 145–158.
  • 30: 18.16 Zeros
    Also, with ρ defined as in (18.15.5) … Let j α , m be the m th positive zero of the Bessel function J α ( x ) 10.21(i)). Then … For three additional terms in this expansion see Gatteschi (2002). … Arrange them in decreasing order: …