About the Project

hypergeometric functions

AdvancedHelp

(0.006 seconds)

41—50 of 222 matching pages

41: 15.4 Special Cases
§15.4(i) Elementary Functions
§15.4(ii) Argument Unity
Chu–Vandermonde Identity
§15.4(iii) Other Arguments
42: 16.9 Zeros
§16.9 Zeros
43: 12.20 Approximations
Luke (1969b, pp. 25 and 35) gives Chebyshev-series expansions for the confluent hypergeometric functions U ( a , b , x ) and M ( a , b , x ) 13.2(i)) whose regions of validity include intervals with endpoints x = and x = 0 , respectively. …
44: 35.1 Special Notation
a , b complex variables.
The main functions treated in this chapter are the multivariate gamma and beta functions, respectively Γ m ( a ) and B m ( a , b ) , and the special functions of matrix argument: Bessel (of the first kind) A ν ( 𝐓 ) and (of the second kind) B ν ( 𝐓 ) ; confluent hypergeometric (of the first kind) F 1 1 ( a ; b ; 𝐓 ) or F 1 1 ( a b ; 𝐓 ) and (of the second kind) Ψ ( a ; b ; 𝐓 ) ; Gaussian hypergeometric F 1 2 ( a 1 , a 2 ; b ; 𝐓 ) or F 1 2 ( a 1 , a 2 b ; 𝐓 ) ; generalized hypergeometric F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) or F q p ( a 1 , , a p b 1 , , b q ; 𝐓 ) . … Related notations for the Bessel functions are 𝒥 ν + 1 2 ( m + 1 ) ( 𝐓 ) = A ν ( 𝐓 ) / A ν ( 𝟎 ) (Faraut and Korányi (1994, pp. 320–329)), K m ( 0 , , 0 , ν | 𝐒 , 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Terras (1988, pp. 49–64)), and 𝒦 ν ( 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Faraut and Korányi (1994, pp. 357–358)).
45: 7.11 Relations to Other Functions
Confluent Hypergeometric Functions
7.11.4 erf z = 2 z π M ( 1 2 , 3 2 , z 2 ) = 2 z π e z 2 M ( 1 , 3 2 , z 2 ) ,
7.11.5 erfc z = 1 π e z 2 U ( 1 2 , 1 2 , z 2 ) = z π e z 2 U ( 1 , 3 2 , z 2 ) .
7.11.6 C ( z ) + i S ( z ) = z M ( 1 2 , 3 2 , 1 2 π i z 2 ) = z e π i z 2 / 2 M ( 1 , 3 2 , 1 2 π i z 2 ) .
Generalized Hypergeometric Functions
46: 10.16 Relations to Other Functions
Confluent Hypergeometric Functions
10.16.5 J ν ( z ) = ( 1 2 z ) ν e i z Γ ( ν + 1 ) M ( ν + 1 2 , 2 ν + 1 , ± 2 i z ) ,
For the functions M and U see §13.2(i). …For the functions M 0 , ν and W 0 , ν see §13.14(i). …
Generalized Hypergeometric Functions
47: 15.19 Methods of Computation
§15.19 Methods of Computation
For z it is always possible to apply one of the linear transformations in §15.8(i) in such a way that the hypergeometric function is expressed in terms of hypergeometric functions with an argument in the interval [ 0 , 1 2 ] . … The representation (15.6.1) can be used to compute the hypergeometric function in the sector | ph ( 1 z ) | < π . … In Colman et al. (2011) an algorithm is described that uses expansions in continued fractions for high-precision computation of the Gauss hypergeometric function, when the variable and parameters are real and one of the numerator parameters is a positive integer. …
48: 16.5 Integral Representations and Integrals
§16.5 Integral Representations and Integrals
Lastly, when p > q + 1 the right-hand side of (16.5.1) can be regarded as the definition of the (customarily undefined) left-hand side. In this event, the formal power-series expansion of the left-hand side (obtained from (16.2.1)) is the asymptotic expansion of the right-hand side as z 0 in the sector | ph ( z ) | ( p + 1 q δ ) π / 2 , where δ is an arbitrary small positive constant. … Laplace transforms and inverse Laplace transforms of generalized hypergeometric functions are given in Prudnikov et al. (1992a, §3.38) and Prudnikov et al. (1992b, §3.36). …
49: 17.4 Basic Hypergeometric Functions
§17.4 Basic Hypergeometric Functions
§17.4(ii) ψ s r Functions
For the function H r r see §16.4(v). … The series (17.4.1) is said to be balanced or Saalschützian when it terminates, r = s , z = q , and … The series (17.4.1) is said to be k-balanced when r = s and …
50: 13.1 Special Notation
The main functions treated in this chapter are the Kummer functions M ( a , b , z ) and U ( a , b , z ) , Olver’s function 𝐌 ( a , b , z ) , and the Whittaker functions M κ , μ ( z ) and W κ , μ ( z ) . …