About the Project

hypergeometric equation

AdvancedHelp

(0.005 seconds)

21—30 of 124 matching pages

21: 31.10 Integral Equations and Representations
β–Ί
31.10.9 𝒦 ⁑ ( ΞΈ , Ο• ) = P ⁑ { 0 1 0 1 2 Ξ΄ Οƒ Ξ± cos 2 ⁑ ΞΈ 1 Ξ³ 1 2 Ο΅ + Οƒ Ξ² } ⁒ P ⁑ { 0 1 0 0 1 2 + Ξ΄ + Οƒ cos 2 ⁑ Ο• 1 Ο΅ 1 Ξ΄ 1 2 + Ο΅ Οƒ } ,
β–Ί
31.10.11 𝒦 ⁑ ( z , t ) = ( z ⁒ t a ) 1 2 Ξ΄ Οƒ ⁒ ( z ⁒ t / a ) 1 2 + Ξ΄ + Οƒ Ξ± ⁒ F 1 2 ⁑ ( 1 2 Ξ΄ Οƒ + Ξ± , 3 2 Ξ΄ Οƒ + Ξ± Ξ³ Ξ± Ξ² + 1 ; a z ⁒ t ) ⁒ P ⁑ { 0 1 0 0 1 2 + Ξ΄ + Οƒ ( z a ) ⁒ ( t a ) ( 1 a ) ⁒ ( z ⁒ t a ) 1 Ο΅ 1 Ξ΄ 1 2 + Ο΅ Οƒ } .
β–ΊThis equation can be solved in terms of hypergeometric functions (§15.11(i)): β–Ί
31.10.22 𝒦 ⁑ ( r , ΞΈ , Ο• ) = r m ⁒ sin 2 ⁒ p ⁑ ΞΈ ⁒ P ⁑ { 0 1 0 0 a cos 2 ⁑ ΞΈ 1 2 ⁒ ( 3 Ξ³ ) c b } ⁒ P ⁑ { 0 1 0 0 a cos 2 ⁑ Ο• 1 Ο΅ 1 Ξ΄ b } ,
22: 15.2 Definitions and Analytical Properties
β–Ί
15.2.3_5 lim c n F ⁑ ( a , b ; c ; z ) Ξ“ ⁑ ( c ) = 𝐅 ⁑ ( a , b ; n ; z ) = ( a ) n + 1 ⁒ ( b ) n + 1 ( n + 1 ) ! ⁒ z n + 1 ⁒ F ⁑ ( a + n + 1 , b + n + 1 ; n + 2 ; z ) , n = 0 , 1 , 2 , .
β–Ί(Both interpretations give solutions of the hypergeometric differential equation (15.10.1), as does 𝐅 ⁑ ( a , b ; c ; z ) , which is analytic at c = 0 , 1 , 2 , .) …
23: 17.6 Ο• 1 2 Function
β–Ί
17.6.1 Ο• 1 2 ⁑ ( a , b c ; q , c / ( a ⁒ b ) ) = ( c / a , c / b ; q ) ( c , c / ( a ⁒ b ) ; q ) , | c | < | a ⁒ b | .
β–Ί
17.6.4_5 Ο• 1 2 ⁑ ( b 2 , b 2 / c c ⁒ q 2 ; q 2 , c ⁒ q 3 / b 2 ) = 1 2 ⁒ b ⁒ ( b 2 , q ; q 2 ) ( c ⁒ q 2 , c ⁒ q / b 2 ; q 2 ) ⁒ ( ( c ⁒ q / b ; q ) ( b ; q ) ( c ⁒ q / b ; q ) ( b ; q ) ) , | c ⁒ q 3 | < | b 2 | .
β–Ί
17.6.16 Ο• 1 2 ⁑ ( a , b c ; q , z ) = ( b , c / a , a ⁒ z , q / ( a ⁒ z ) ; q ) ( c , b / a , z , q / z ; q ) ⁒ Ο• 1 2 ⁑ ( a , a ⁒ q / c a ⁒ q / b ; q , c ⁒ q / ( a ⁒ b ⁒ z ) ) + ( a , c / b , b ⁒ z , q / ( b ⁒ z ) ; q ) ( c , a / b , z , q / z ; q ) ⁒ Ο• 1 2 ⁑ ( b , b ⁒ q / c b ⁒ q / a ; q , c ⁒ q / ( a ⁒ b ⁒ z ) ) , | z | < 1 , | c ⁒ q | < | a ⁒ b ⁒ z | .
β–Ί
§17.6(iv) Differential Equations
β–Ί(17.6.27) reduces to the hypergeometric equation (15.10.1) with the substitutions a q a , b q b , c q c , followed by lim q 1 . …
24: 13.29 Methods of Computation
β–Ί
§13.29(ii) Differential Equations
β–ΊA comprehensive and powerful approach is to integrate the differential equations (13.2.1) and (13.14.1) by direct numerical methods. … β–ΊFor M ⁑ ( a , b , z ) and M ΞΊ , ΞΌ ⁑ ( z ) this means that in the sector | ph ⁑ z | Ο€ we may integrate along outward rays from the origin with initial values obtained from (13.2.2) and (13.14.2). β–ΊFor U ⁑ ( a , b , z ) and W ΞΊ , ΞΌ ⁑ ( z ) we may integrate along outward rays from the origin in the sectors 1 2 ⁒ Ο€ < | ph ⁑ z | < 3 2 ⁒ Ο€ , with initial values obtained from connection formulas in §13.2(vii), §13.14(vii). … β–ΊThe recurrence relations in §§13.3(i) and 13.15(i) can be used to compute the confluent hypergeometric functions in an efficient way. …
25: Bibliography D
β–Ί
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • 26: 35.7 Gaussian Hypergeometric Function of Matrix Argument
    β–Ί
    35.7.3 F 1 2 ⁑ ( a , b c ; [ t 1 0 0 t 2 ] ) = k = 0 ( a ) k ⁒ ( c a ) k ⁒ ( b ) k ⁒ ( c b ) k k ! ⁒ ( c ) 2 ⁒ k ⁒ ( c 1 2 ) k ⁒ ( t 1 ⁒ t 2 ) k ⁒ F 1 2 ⁑ ( a + k , b + k c + 2 ⁒ k ; t 1 + t 2 t 1 ⁒ t 2 ) .
    β–Ί
    §35.7(iii) Partial Differential Equations
    β–ΊSubject to the conditions (a)–(c), the function f ⁑ ( 𝐓 ) = F 1 2 ⁑ ( a , b ; c ; 𝐓 ) is the unique solution of each partial differential equationβ–ΊSystems of partial differential equations for the F 1 0 (defined in §35.8) and F 1 1 functions of matrix argument can be obtained by applying (35.8.9) and (35.8.10) to (35.7.9). …
    27: 18.5 Explicit Representations
    β–Ί
    18.5.11_1 T n ⁑ ( x ) = 1 2 ⁒ n ⁒ β„“ = 0 n / 2 ( 1 ) β„“ ⁒ ( n β„“ 1 ) ! β„“ ! ⁒ ( n 2 ⁒ β„“ ) ! ⁒ ( 2 ⁒ x ) n 2 ⁒ β„“ = 2 n 1 ⁒ x n ⁒ F 1 2 ⁑ ( 1 2 ⁒ n , 1 2 ⁒ n + 1 2 1 n ; 1 x 2 ) , n 1 ,
    β–Ί
    18.5.11_2 T n ⁑ ( x ) = F 1 2 ⁑ ( n , n 1 2 ; 1 x 2 ) ,
    β–Ί
    18.5.11_3 U n ⁑ ( x ) = β„“ = 0 n / 2 ( 1 ) β„“ ⁒ ( n β„“ ) ! β„“ ! ⁒ ( n 2 ⁒ β„“ ) ! ⁒ ( 2 ⁒ x ) n 2 ⁒ β„“ = ( 2 ⁒ x ) n ⁒ F 1 2 ⁑ ( 1 2 ⁒ n , 1 2 ⁒ n + 1 2 n ; 1 x 2 ) ,
    β–Ί
    18.5.11_4 U n ⁑ ( x ) = ( n + 1 ) ⁒ F 1 2 ⁑ ( n , n + 2 3 2 ; 1 x 2 ) .
    28: 10.16 Relations to Other Functions
    β–ΊPrincipal values on each side of these equations correspond. β–Ί
    Confluent Hypergeometric Functions
    β–ΊFor the functions M and U see §13.2(i). …For the functions M 0 , Ξ½ and W 0 , Ξ½ see §13.14(i). … β–Ί
    Generalized Hypergeometric Functions
    29: 18.35 Pollaczek Polynomials
    β–Ί
    18.35.4_5 P n ( Ξ» ) ⁑ ( cos ⁑ ΞΈ ; a , b ) = ( 2 ⁒ Ξ» ) n n ! ⁒ e i ⁒ n ⁒ ΞΈ ⁒ F ⁑ ( n , Ξ» + i ⁒ Ο„ a , b ⁑ ( ΞΈ ) 2 ⁒ Ξ» ; 1 e 2 ⁒ i ⁒ ΞΈ ) .
    β–Ί
    18.35.6_6 w ( Ξ» ) ⁑ ( cos ⁑ ΞΈ ; a , b , c ) = e ( 2 ⁒ ΞΈ Ο€ ) ⁒ Ο„ a , b ⁑ ( ΞΈ ) ⁒ ( 2 ⁒ sin ⁑ ΞΈ ) 2 ⁒ Ξ» 1 ⁒ | Ξ“ ⁑ ( c + Ξ» + i ⁒ Ο„ a , b ⁑ ( ΞΈ ) ) | 2 Ο€ ⁒ | F ⁑ ( 1 Ξ» + i ⁒ Ο„ a , b ⁑ ( ΞΈ ) , c c + Ξ» + i ⁒ Ο„ a , b ⁑ ( ΞΈ ) ; e 2 ⁒ i ⁒ ΞΈ ) | 2 ,
    30: 16.10 Expansions in Series of F q p Functions
    §16.10 Expansions in Series of F q p Functions
    β–Ί
    16.10.1 F q + s p + r ⁑ ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ⁒ ΞΆ ) = k = 0 ( 𝐚 ) k ⁒ ( Ξ± ) k ⁒ ( Ξ² ) k ⁒ ( z ) k ( 𝐛 ) k ⁒ ( Ξ³ + k ) k ⁒ k ! ⁒ F q + 1 p + 2 ⁑ ( Ξ± + k , Ξ² + k , a 1 + k , , a p + k Ξ³ + 2 ⁒ k + 1 , b 1 + k , , b q + k ; z ) ⁒ F s + 2 r + 2 ⁑ ( k , Ξ³ + k , c 1 , , c r Ξ± , Ξ² , d 1 , , d s ; ΞΆ ) .
    β–ΊThe next expansion is given in Nørlund (1955, equation (1.21)): β–Ί β–ΊExpansions of the form n = 1 ( ± 1 ) n ⁒ F p + 1 p ⁑ ( 𝐚 ; 𝐛 ; n 2 ⁒ z 2 ) are discussed in Miller (1997), and further series of generalized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov et al. (1990, §§5.3, 6.8–6.9).