About the Project

hyperbolic tangent function

AdvancedHelp

(0.008 seconds)

21—30 of 56 matching pages

21: 5.4 Special Values and Extrema
22: 10.24 Functions of Imaginary Order
23: 19.2 Definitions
19.2.18 R C ( x , y ) = 1 y x arctan y x x = 1 y x arccos x / y , 0 x < y ,
19.2.19 R C ( x , y ) = 1 x y arctanh x y x = 1 x y ln x + x y y , 0 < y < x .
19.2.20 R C ( x , y ) = x x y R C ( x y , y ) = 1 x y arctanh x x y = 1 x y ln x + x y y , y < 0 x .
24: 22.5 Special Values
§22.5 Special Values
For the other nine functions ratios can be taken; compare (22.2.10). …
§22.5(ii) Limiting Values of k
In these cases the elliptic functions degenerate into elementary trigonometric and hyperbolic functions, respectively. …
25: 15.12 Asymptotic Approximations
15.12.5 𝐅 ( a + λ , b λ c ; 1 2 1 2 z ) = 2 ( a + b 1 ) / 2 ( z + 1 ) ( c a b 1 ) / 2 ( z 1 ) c / 2 ζ sinh ζ ( λ + 1 2 a 1 2 b ) 1 c ( I c 1 ( ( λ + 1 2 a 1 2 b ) ζ ) ( 1 + O ( λ 2 ) ) + I c 2 ( ( λ + 1 2 a 1 2 b ) ζ ) 2 λ + a b ( ( c 1 2 ) ( c 3 2 ) ( 1 ζ coth ζ ) + 1 2 ( 2 c a b 1 ) ( a + b 1 ) tanh ( 1 2 ζ ) + O ( λ 2 ) ) ) ,
26: 4.23 Inverse Trigonometric Functions
27: 10.20 Uniform Asymptotic Expansions for Large Order
10.20.17 z = ± ( τ coth τ τ 2 ) 1 2 ± i ( τ 2 τ tanh τ ) 1 2 , 0 τ τ 0 ,
28: 14.5 Special Values
29: 14.15 Uniform Asymptotic Approximations
14.15.27 1 2 ζ ( ζ 2 α 2 ) 1 / 2 1 2 α 2 arccosh ( ζ α ) = ( 1 a 2 ) 1 / 2 arctanh ( 1 x ( x 2 a 2 1 a 2 ) 1 / 2 ) arccosh ( x a ) , a x < 1 , α ζ < ,
14.15.31 1 2 ζ ( ζ 2 + α 2 ) 1 / 2 + 1 2 α 2 arcsinh ( ζ α ) = ( 1 + a 2 ) 1 / 2 arctanh ( x ( 1 + a 2 x 2 + a 2 ) 1 / 2 ) arcsinh ( x a ) , 1 < x < 1 , < ζ < ,
30: 14.20 Conical (or Mehler) Functions
14.20.14 π 0 τ tanh ( τ π ) cosh ( τ π ) P 1 2 + i τ ( x ) P 1 2 + i τ ( y ) d τ = 1 y + x .