About the Project

hyperbolic sine function

AdvancedHelp

(0.017 seconds)

11—20 of 110 matching pages

11: 19.10 Relations to Other Functions
12: 4.21 Identities
4.21.37 sin z = sin x cosh y + i cos x sinh y ,
4.21.38 cos z = cos x cosh y i sin x sinh y ,
4.21.39 tan z = sin ( 2 x ) + i sinh ( 2 y ) cos ( 2 x ) + cosh ( 2 y ) ,
4.21.40 cot z = sin ( 2 x ) i sinh ( 2 y ) cosh ( 2 y ) cos ( 2 x ) .
4.21.41 | sin z | = ( sin 2 x + sinh 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 y ) cos ( 2 x ) ) ) 1 / 2 ,
13: 14.19 Toroidal (or Ring) Functions
14.19.4 P n 1 2 m ( cosh ξ ) = Γ ( n + m + 1 2 ) ( sinh ξ ) m 2 m π 1 / 2 Γ ( n m + 1 2 ) Γ ( m + 1 2 ) 0 π ( sin ϕ ) 2 m ( cosh ξ + cos ϕ sinh ξ ) n + m + ( 1 / 2 ) d ϕ ,
14.19.5 𝑸 n 1 2 m ( cosh ξ ) = Γ ( n + 1 2 ) Γ ( n + m + 1 2 ) Γ ( n m + 1 2 ) 0 cosh ( m t ) ( cosh ξ + cosh t sinh ξ ) n + ( 1 / 2 ) d t , m < n + 1 2 .
14.19.6 𝑸 1 2 μ ( cosh ξ ) + 2 n = 1 Γ ( μ + n + 1 2 ) Γ ( μ + 1 2 ) 𝑸 n 1 2 μ ( cosh ξ ) cos ( n ϕ ) = ( 1 2 π ) 1 / 2 ( sinh ξ ) μ ( cosh ξ cos ϕ ) μ + ( 1 / 2 ) , μ > 1 2 .
14: 4.37 Inverse Hyperbolic Functions
4.37.4 Arccsch z = Arcsinh ( 1 / z ) ,
Each is two-valued on the corresponding cut(s), and each is real on the part of the real axis that remains after deleting the intersections with the corresponding cuts. …
4.37.7 arccsch z = arcsinh ( 1 / z ) ,
4.37.10 arcsinh ( z ) = arcsinh z .
4.37.26 z = sinh w ,
15: 4.18 Inequalities
4.18.5 | sinh y | | sin z | cosh y ,
4.18.6 | sinh y | | cos z | cosh y ,
4.18.9 | sin z | sinh | z | ,
16: 4.30 Elementary Properties
§4.30 Elementary Properties
Table 4.30.1: Hyperbolic functions: interrelations. All square roots have their principal values when the functions are real, nonnegative, and finite.
sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
sinh θ a ( a 2 1 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 a 1 ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
17: 28.23 Expansions in Series of Bessel Functions
28.23.5 me ν ( 1 2 π , h 2 ) M ν ( j ) ( z , h ) = i e i ν π / 2 coth z n = ( ν + 2 n ) c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h sinh z ) ,
28.23.7 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 1 2 π , h 2 ) ) 1 = 0 A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h sinh z ) ,
28.23.9 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m + 1 ( ce 2 m + 1 ( 1 2 π , h 2 ) ) 1 coth z = 0 ( 2 + 1 ) A 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h sinh z ) ,
28.23.11 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 1 ( 1 2 π , h 2 ) ) 1 = 0 B 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h sinh z ) ,
28.23.13 Ms 2 m + 2 ( j ) ( z , h ) = ( 1 ) m + 1 ( se 2 m + 2 ( 1 2 π , h 2 ) ) 1 coth z = 0 ( 2 + 2 ) B 2 + 2 2 m + 2 ( h 2 ) 𝒞 2 + 2 ( j ) ( 2 h sinh z ) .
18: 28.32 Mathematical Applications
§28.32 Mathematical Applications
§28.32(i) Elliptical Coordinates and an Integral Relationship
19: 13.24 Series
13.24.3 exp ( 1 2 z ( coth t 1 t ) ) ( t sinh t ) 1 2 μ = s = 0 p s ( μ ) ( z ) ( t z ) s .
20: 10.35 Generating Function and Associated Series
§10.35 Generating Function and Associated Series
Jacobi–Anger expansions: for z , θ , …
10.35.3 e z sin θ = I 0 ( z ) + 2 k = 0 ( 1 ) k I 2 k + 1 ( z ) sin ( ( 2 k + 1 ) θ ) + 2 k = 1 ( 1 ) k I 2 k ( z ) cos ( 2 k θ ) .
cosh z = I 0 ( z ) + 2 I 2 ( z ) + 2 I 4 ( z ) + 2 I 6 ( z ) + ,
sinh z = 2 I 1 ( z ) + 2 I 3 ( z ) + 2 I 5 ( z ) + .