About the Project

harmonic analysis

AdvancedHelp

(0.001 seconds)

11—16 of 16 matching pages

11: Bibliography B
  • A. Bar-Shalom and M. Klapisch (1988) NJGRAF: An efficient program for calculation of general recoupling coefficients by graphical analysis, compatible with NJSYM. Comput. Phys. Comm. 50 (3), pp. 375–393.
  • C. Bingham, T. Chang, and D. Richards (1992) Approximating the matrix Fisher and Bingham distributions: Applications to spherical regression and Procrustes analysis. J. Multivariate Anal. 41 (2), pp. 314–337.
  • W. G. C. Boyd (1973) The asymptotic analysis of canonical problems in high-frequency scattering theory. II. The circular and parabolic cylinders. Proc. Cambridge Philos. Soc. 74, pp. 313–332.
  • W. J. Braithwaite (1973) Associated Legendre polynomials, ordinary and modified spherical harmonics. Comput. Phys. Comm. 5 (5), pp. 390–394.
  • T. Busch, B. Englert, K. Rzażewski, and M. Wilkens (1998) Two cold atoms in a harmonic trap. Found. Phys. 28 (4), pp. 549–559.
  • 12: Bibliography
  • L. V. Ahlfors (1966) Complex Analysis: An Introduction of the Theory of Analytic Functions of One Complex Variable. 2nd edition, McGraw-Hill Book Co., New York.
  • N. I. Akhiezer (2021) The classical moment problem and some related questions in analysis. Classics in Applied Mathematics, Vol. 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • H. Alzer (1997a) A harmonic mean inequality for the gamma function. J. Comput. Appl. Math. 87 (2), pp. 195–198.
  • G. E. Andrews (1986) q -Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. CBMS Regional Conference Series in Mathematics, Vol. 66, Amer. Math. Soc., Providence, RI.
  • 13: Bibliography G
  • W. Gautschi (1974) A harmonic mean inequality for the gamma function. SIAM J. Math. Anal. 5 (2), pp. 278–281.
  • A. Gil and J. Segura (1998) A code to evaluate prolate and oblate spheroidal harmonics. Comput. Phys. Comm. 108 (2-3), pp. 267–278.
  • A. Gil and J. Segura (2000) Evaluation of toroidal harmonics. Comput. Phys. Comm. 124 (1), pp. 104–122.
  • A. Gil and J. Segura (2001) DTORH3 2.0: A new version of a computer program for the evaluation of toroidal harmonics. Comput. Phys. Comm. 139 (2), pp. 186–191.
  • D. Gómez-Ullate and R. Milson (2014) Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials. J. Phys. A 47 (1), pp. 015203, 26 pp..
  • 14: Bibliography D
  • H. F. Davis and A. D. Snider (1987) Introduction to Vector Analysis. 5th edition, Allyn and Bacon Inc., Boston, MA.
  • N. G. de Bruijn (1961) Asymptotic Methods in Analysis. 2nd edition, Bibliotheca Mathematica, Vol. IV, North-Holland Publishing Co., Amsterdam.
  • P. Dean (1966) The constrained quantum mechanical harmonic oscillator. Proc. Cambridge Philos. Soc. 62, pp. 277–286.
  • Delft Numerical Analysis Group (1973) On the computation of Mathieu functions. J. Engrg. Math. 7, pp. 39–61.
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • 15: Bibliography C
  • B. C. Carlson and G. S. Rushbrooke (1950) On the expansion of a Coulomb potential in spherical harmonics. Proc. Cambridge Philos. Soc. 46, pp. 626–633.
  • B. C. Carlson (1990) Landen Transformations of Integrals. In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.), Lecture Notes in Pure and Appl. Math., Vol. 124, pp. 75–94.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • R. C. Y. Chin and G. W. Hedstrom (1978) A dispersion analysis for difference schemes: Tables of generalized Airy functions. Math. Comp. 32 (144), pp. 1163–1170.
  • A. G. Constantine (1963) Some non-central distribution problems in multivariate analysis. Ann. Math. Statist. 34 (4), pp. 1270–1285.
  • 16: 18.38 Mathematical Applications
    §18.38(i) Classical OP’s: Numerical Analysis
    Light and Carrington Jr. (2000) review and extend the one-dimensional analysis to solution of multi-dimensional many-particle systems, where the sparse nature of the resulting matrices is highly advantageous. …Each of these typically require a particular non-classical weight functions and analysis of the corresponding OP’s. …
    Zonal Spherical Harmonics
    Ultraspherical polynomials are zonal spherical harmonics. …