About the Project

generalized hypergeometric functions

AdvancedHelp

(0.018 seconds)

11—20 of 138 matching pages

11: 16.6 Transformations of Variable
§16.6 Transformations of Variable
β–Ί
Quadratic
β–Ί
16.6.1 F 2 3 ⁑ ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a ⁒ F 2 3 ⁑ ( a b c + 1 , 1 2 ⁒ a , 1 2 ⁒ ( a + 1 ) a b + 1 , a c + 1 ; 4 ⁒ z ( 1 z ) 2 ) .
β–Ί
Cubic
β–Ί
16.6.2 F 2 3 ⁑ ( a , 2 ⁒ b a 1 , 2 2 ⁒ b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a ⁒ F 2 3 ⁑ ( 1 3 ⁒ a , 1 3 ⁒ a + 1 3 , 1 3 ⁒ a + 2 3 b , a b + 3 2 ; 27 ⁒ z 4 ⁒ ( 1 z ) 3 ) .
12: 16.4 Argument Unity
β–Ίβ–Ί
Watson’s Sum
β–Ί
Whipple’s Sum
β–Ίβ–Ί
13: 35.9 Applications
§35.9 Applications
β–ΊIn multivariate statistical analysis based on the multivariate normal distribution, the probability density functions of many random matrices are expressible in terms of generalized hypergeometric functions of matrix argument F q p , with p 2 and q 1 . … β–ΊIn chemistry, Wei and Eichinger (1993) expresses the probability density functions of macromolecules in terms of generalized hypergeometric functions of matrix argument, and develop asymptotic approximations for these density functions. …
14: 16.9 Zeros
§16.9 Zeros
15: 35.10 Methods of Computation
§35.10 Methods of Computation
β–ΊSee Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ⁑ ( m ) applied to a generalization of the integral (35.5.8). …
16: 16.5 Integral Representations and Integrals
§16.5 Integral Representations and Integrals
β–Ίwhere the contour of integration separates the poles of Ξ“ ⁑ ( a k + s ) , k = 1 , , p , from those of Ξ“ ⁑ ( s ) . … β–ΊLastly, when p > q + 1 the right-hand side of (16.5.1) can be regarded as the definition of the (customarily undefined) left-hand side. … β–ΊLaplace transforms and inverse Laplace transforms of generalized hypergeometric functions are given in Prudnikov et al. (1992a, §3.38) and Prudnikov et al. (1992b, §3.36). …
17: 16.18 Special Cases
§16.18 Special Cases
β–ΊThe F 1 1 and F 1 2 functions introduced in Chapters 13 and 15, as well as the more general F q p functions introduced in the present chapter, are all special cases of the Meijer G -function. … β–Ί
16.18.1 F q p ⁑ ( a 1 , , a p b 1 , , b q ; z ) = ( k = 1 q Ξ“ ⁑ ( b k ) / k = 1 p Ξ“ ⁑ ( a k ) ) ⁒ G p , q + 1 1 , p ⁑ ( z ; 1 a 1 , , 1 a p 0 , 1 b 1 , , 1 b q ) = ( k = 1 q Ξ“ ⁑ ( b k ) / k = 1 p Ξ“ ⁑ ( a k ) ) ⁒ G q + 1 , p p , 1 ⁑ ( 1 z ; 1 , b 1 , , b q a 1 , , a p ) .
β–Ί
18: 7.11 Relations to Other Functions
19: 16.10 Expansions in Series of F q p Functions
§16.10 Expansions in Series of F q p Functions
β–Ί
16.10.1 F q + s p + r ⁑ ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ⁒ ΞΆ ) = k = 0 ( 𝐚 ) k ⁒ ( Ξ± ) k ⁒ ( Ξ² ) k ⁒ ( z ) k ( 𝐛 ) k ⁒ ( Ξ³ + k ) k ⁒ k ! ⁒ F q + 1 p + 2 ⁑ ( Ξ± + k , Ξ² + k , a 1 + k , , a p + k Ξ³ + 2 ⁒ k + 1 , b 1 + k , , b q + k ; z ) ⁒ F s + 2 r + 2 ⁑ ( k , Ξ³ + k , c 1 , , c r Ξ± , Ξ² , d 1 , , d s ; ΞΆ ) .
β–Ί β–ΊExpansions of the form n = 1 ( ± 1 ) n ⁒ F p + 1 p ⁑ ( 𝐚 ; 𝐛 ; n 2 ⁒ z 2 ) are discussed in Miller (1997), and further series of generalized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov et al. (1990, §§5.3, 6.8–6.9).
20: 10.39 Relations to Other Functions