About the Project

generalized exponentials

AdvancedHelp

(0.005 seconds)

21—30 of 187 matching pages

21: Bibliography
  • Z. Altaç (1996) Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118 (3), pp. 789–792.
  • 22: Bibliography D
  • T. M. Dunster (1996b) Asymptotics of the generalized exponential integral, and error bounds in the uniform asymptotic smoothing of its Stokes discontinuities. Proc. Roy. Soc. London Ser. A 452, pp. 1351–1367.
  • 23: Bibliography M
  • M. S. Milgram (1985) The generalized integro-exponential function. Math. Comp. 44 (170), pp. 443–458.
  • G. F. Miller (1960) Tables of Generalized Exponential Integrals. NPL Mathematical Tables, Vol. III, Her Majesty’s Stationery Office, London.
  • 24: 6.4 Analytic Continuation
    The general value of E 1 ( z ) is given by
    6.4.1 E 1 ( z ) = Ein ( z ) Ln z γ ;
    25: 4.2 Definitions
    4.2.17 log 10 e = 0.43429 44819 03251 82765 ,
    4.2.25 exp z = ζ z = Ln ζ .
    4.2.26 z a = exp ( a Ln z ) , z 0 .
    but the general value of e z is …
    4.2.35 z a = w z = exp ( 1 a Ln w ) .
    26: 8.7 Series Expansions
    8.7.6 Γ ( a , x ) = x a e x n = 0 L n ( a ) ( x ) n + 1 , x > 0 , a < 1 2 .
    27: Bibliography W
  • P. L. Walker (1991) Infinitely differentiable generalized logarithmic and exponential functions. Math. Comp. 57 (196), pp. 723–733.
  • 28: 4.8 Identities
    4.8.10 exp ( ln z ) = exp ( Ln z ) = z .
    29: 18.39 Applications in the Physical Sciences
    18.39.29 ψ p , l ( r ) = Z p ! ( p + 2 l + 1 ) ! e ρ p / 2 ρ p l + 1 p + l + 1 L p ( 2 l + 1 ) ( ρ p ) , p = 0 , 1 , 2 , ; l = 0 , 1 , 2 , ,
    18.39.34 ψ n , l ( r ) = 1 n Z ( n l 1 ) ! ( n + l ) ! e ρ n / 2 ρ n l + 1 L n l 1 ( 2 l + 1 ) ( ρ n ) , n = 1 , 2 , , l = 0 , 1 , n 1 ,
    18.39.37 R n , l ( r ) = 2 n 2 Z 3 ( n l 1 ) ! ( n + l ) ! e ρ n / 2 ρ n l L n l 1 ( 2 l + 1 ) ( ρ n ) ,
    18.39.44 ϕ n , l ( s r ) = ( s r ) l + 1 e s r / 2 L n ( 2 l + 1 ) ( s r ) , n = 0 , 1 , 2 , ,
    30: 18.12 Generating Functions
    18.12.13 ( 1 z ) α 1 exp ( x z z 1 ) = n = 0 L n ( α ) ( x ) z n , | z | < 1 .
    18.12.14 Γ ( α + 1 ) ( x z ) 1 2 α e z J α ( 2 x z ) = n = 0 L n ( α ) ( x ) ( α + 1 ) n z n .