About the Project

generalized exponentials

AdvancedHelp

(0.005 seconds)

11—20 of 187 matching pages

11: 8.28 Software
§8.28(vi) Generalized Exponential Integral for Real Argument and Integer Parameter
§8.28(vii) Generalized Exponential Integral for Complex Argument and/or Parameter
12: 17.17 Physical Applications
It involves q -generalizations of exponentials and Laguerre polynomials, and has been applied to the problems of the harmonic oscillator and Coulomb potentials. …
13: 2.11 Remainder Terms; Stokes Phenomenon
From §8.19(i) the generalized exponential integral is given by
2.11.5 E p ( z ) = e z z p 1 Γ ( p ) 0 e z t t p 1 1 + t d t
However, on combining (2.11.6) with the connection formula (8.19.18), with m = 1 , we derive … Two different asymptotic expansions in terms of elementary functions, (2.11.6) and (2.11.7), are available for the generalized exponential integral in the sector 1 2 π < ph z < 3 2 π . …
14: Bibliography O
  • F. W. J. Olver (1991a) Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral. SIAM J. Math. Anal. 22 (5), pp. 1460–1474.
  • F. W. J. Olver (1994b) The Generalized Exponential Integral. In Approximation and Computation (West Lafayette, IN, 1993), R. V. M. Zahar (Ed.), International Series of Numerical Mathematics, Vol. 119, pp. 497–510.
  • 15: Bibliography C
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1987) A numerical method for generalized exponential integrals. Comput. Math. Appl. 14 (4), pp. 261–268.
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1988) On the evaluation of generalized exponential integrals E v ( x ) . J. Comput. Phys. 78 (2), pp. 278–287.
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1990b) On a Tricomi series representation for the generalized exponential integral. Internat. J. Comput. Math. 31, pp. 257–262.
  • C. W. Clenshaw, D. W. Lozier, F. W. J. Olver, and P. R. Turner (1986) Generalized exponential and logarithmic functions. Comput. Math. Appl. Part B 12 (5-6), pp. 1091–1101.
  • 16: 8.4 Special Values
    8.4.13 Γ ( 1 n , z ) = z 1 n E n ( z ) ,
    17: 13.6 Relations to Other Functions
    When a b is an integer or a is a positive integer the Kummer functions can be expressed as incomplete gamma functions (or generalized exponential integrals). …
    13.6.6 U ( a , a , z ) = z 1 a U ( 1 , 2 a , z ) = z 1 a e z E a ( z ) = e z Γ ( 1 a , z ) .
    18: 6.2 Definitions and Interrelations
    The generalized exponential integral E p ( z ) , p , is treated in Chapter 8. …
    19: 13.18 Relations to Other Functions
    When 1 2 κ ± μ is an integer the Whittaker functions can be expressed as incomplete gamma functions (or generalized exponential integrals). …
    13.18.17 W 1 2 α + 1 2 + n , 1 2 α ( z ) = ( 1 ) n ( α + 1 ) n M 1 2 α + 1 2 + n , 1 2 α ( z ) = ( 1 ) n n ! e 1 2 z z 1 2 α + 1 2 L n ( α ) ( z ) .
    20: 3.10 Continued Fractions
    For special functions see §5.10 (gamma function), §7.9 (error function), §8.9 (incomplete gamma functions), §8.17(v) (incomplete beta function), §8.19(vii) (generalized exponential integral), §§10.10 and 10.33 (quotients of Bessel functions), §13.6 (quotients of confluent hypergeometric functions), §13.19 (quotients of Whittaker functions), and §15.7 (quotients of hypergeometric functions). …