About the Project

generalized Mehler%E2%80%93Fock transformation

AdvancedHelp

(0.003 seconds)

11—20 of 466 matching pages

11: 16.24 Physical Applications
§16.24 Physical Applications
§16.24(i) Random Walks
Generalized hypergeometric functions and Appell functions appear in the evaluation of the so-called Watson integrals which characterize the simplest possible lattice walks. …
§16.24(iii) 3 j , 6 j , and 9 j Symbols
The coefficients of transformations between different coupling schemes of three angular momenta are related to the Wigner 6 j symbols. …
12: 8.16 Generalizations
§8.16 Generalizations
For a generalization of the incomplete gamma function, including asymptotic approximations, see Chaudhry and Zubair (1994, 2001) and Chaudhry et al. (1996). Other generalizations are considered in Guthmann (1991) and Paris (2003).
13: 14.1 Special Notation
x , y , τ real variables.
μ , ν general order and degree, respectively.
The main functions treated in this chapter are the Legendre functions 𝖯 ν ( x ) , 𝖰 ν ( x ) , P ν ( z ) , Q ν ( z ) ; Ferrers functions 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) (also known as the Legendre functions on the cut); associated Legendre functions P ν μ ( z ) , Q ν μ ( z ) , 𝑸 ν μ ( z ) ; conical functions 𝖯 1 2 + i τ μ ( x ) , 𝖰 1 2 + i τ μ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) , P 1 2 + i τ μ ( x ) , Q 1 2 + i τ μ ( x ) (also known as Mehler functions). …
14: 14.12 Integral Representations
§14.12(i) 1 < x < 1
Mehler–Dirichlet Formula
14.12.1 𝖯 ν μ ( cos θ ) = 2 1 / 2 ( sin θ ) μ π 1 / 2 Γ ( 1 2 μ ) 0 θ cos ( ( ν + 1 2 ) t ) ( cos t cos θ ) μ + ( 1 / 2 ) d t , 0 < θ < π , μ < 1 2 .
14.12.2 𝖯 ν μ ( x ) = ( 1 x 2 ) μ / 2 Γ ( μ ) x 1 𝖯 ν ( t ) ( t x ) μ 1 d t , μ > 0 ;
14.12.5 P ν μ ( x ) = ( x 2 1 ) μ / 2 Γ ( μ ) 1 x P ν ( t ) ( x t ) μ 1 d t , μ > 0 .
15: 17.15 Generalizations
§17.15 Generalizations
16: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
§10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
The function ϕ ( ρ , β ; z ) is defined by
10.46.1 ϕ ( ρ , β ; z ) = k = 0 z k k ! Γ ( ρ k + β ) , ρ > 1 .
For asymptotic expansions of ϕ ( ρ , β ; z ) as z in various sectors of the complex z -plane for fixed real values of ρ and fixed real or complex values of β , see Wright (1935) when ρ > 0 , and Wright (1940b) when 1 < ρ < 0 . … The Laplace transform of ϕ ( ρ , β ; z ) can be expressed in terms of the Mittag-Leffler function: …
17: Bibliography G
  • B. Gabutti (1980) On the generalization of a method for computing Bessel function integrals. J. Comput. Appl. Math. 6 (2), pp. 167–168.
  • G. Gasper (1975) Formulas of the Dirichlet-Mehler Type. In Fractional Calculus and its Applications, B. Ross (Ed.), Lecture Notes in Math., Vol. 457, pp. 207–215.
  • W. Gautschi (1993) On the computation of generalized Fermi-Dirac and Bose-Einstein integrals. Comput. Phys. Comm. 74 (2), pp. 233–238.
  • I. M. Gel’fand and G. E. Shilov (1964) Generalized Functions. Vol. 1: Properties and Operations. Academic Press, New York.
  • Z. Gong, L. Zejda, W. Dappen, and J. M. Aparicio (2001) Generalized Fermi-Dirac functions and derivatives: Properties and evaluation. Comput. Phys. Comm. 136 (3), pp. 294–309.
  • 18: 18.11 Relations to Other Functions
    See §§18.5(i) and 18.5(iii) for relations to trigonometric functions, the hypergeometric function, and generalized hypergeometric functions. …
    18.11.2 L n ( α ) ( x ) = ( α + 1 ) n n ! M ( n , α + 1 , x ) = ( 1 ) n n ! U ( n , α + 1 , x ) = ( α + 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x M n + 1 2 ( α + 1 ) , 1 2 α ( x ) = ( 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x W n + 1 2 ( α + 1 ) , 1 2 α ( x ) .
    §18.11(ii) Formulas of Mehler–Heine Type
    18.11.6 lim n 1 n α L n ( α ) ( z n ) = 1 z 1 2 α J α ( 2 z 1 2 ) .
    19: 16.6 Transformations of Variable
    §16.6 Transformations of Variable
    Quadratic
    Cubic
    16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
    For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
    20: 7.16 Generalized Error Functions
    §7.16 Generalized Error Functions
    Generalizations of the error function and Dawson’s integral are 0 x e t p d t and 0 x e t p d t . …