About the Project

general values

AdvancedHelp

(0.003 seconds)

21—30 of 185 matching pages

21: 14.20 Conical (or Mehler) Functions
Lastly, for the range 1 < x < , P 1 2 + i τ μ ( x ) is a real-valued solution of (14.20.1); in terms of Q 1 2 ± i τ μ ( x ) (which are complex-valued in general): …
22: 9.17 Methods of Computation
Among the integral representations of the Airy functions the Stieltjes transform (9.10.18) furnishes a way of computing Ai ( z ) in the complex plane, once values of this function can be generated on the positive real axis. …
23: 28.35 Tables
  • Blanch and Clemm (1962) includes values of Mc n ( 1 ) ( x , q ) and Mc n ( 1 ) ( x , q ) for n = 0 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Also Ms n ( 1 ) ( x , q ) and Ms n ( 1 ) ( x , q ) for n = 1 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Precision is generally 7D.

  • Blanch and Clemm (1965) includes values of Mc n ( 2 ) ( x , q ) , Mc n ( 2 ) ( x , q ) for n = 0 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . Also Ms n ( 2 ) ( x , q ) , Ms n ( 2 ) ( x , q ) for n = 1 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . In all cases q = 0 ( .05 ) 1 . Precision is generally 7D. Approximate formulas and graphs are also included.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • 24: Philip J. Davis
    The surface color map can be changed from height-based to phase-based for complex valued functions, and density plots can be generated through strategic scaling. …
    25: 3.7 Ordinary Differential Equations
    General methods for boundary-value problems for ordinary differential equations are given in Ascher et al. (1995). …
    26: 24.16 Generalizations
    For extensions of B n ( ) ( x ) to complex values of x , n , and , and also for uniform asymptotic expansions for large x and large n , see Temme (1995b) and López and Temme (1999b, 2010b). …
    27: 9.19 Approximations
  • Corless et al. (1992) describe a method of approximation based on subdividing into a triangular mesh, with values of Ai ( z ) , Ai ( z ) stored at the nodes. Ai ( z ) and Ai ( z ) are then computed from Taylor-series expansions centered at one of the nearest nodes. The Taylor coefficients are generated by recursion, starting from the stored values of Ai ( z ) , Ai ( z ) at the node. Similarly for Bi ( z ) , Bi ( z ) .

  • 28: Bibliography K
  • U. J. Knottnerus (1960) Approximation Formulae for Generalized Hypergeometric Functions for Large Values of the Parameters. J. B. Wolters, Groningen.
  • 29: 3.11 Approximation Techniques
    For the expansion (3.11.11), numerical values of the Chebyshev polynomials T n ( x ) can be generated by application of the recurrence relation (3.11.7). …
    30: 19.17 Graphics
    Because the R -function is homogeneous, there is no loss of generality in giving one variable the value 1 or 1 (as in Figure 19.3.2). …