About the Project

general bases

AdvancedHelp

(0.003 seconds)

11—20 of 165 matching pages

11: Bibliography B
  • W. Barrett (1981) Mathieu functions of general order: Connection formulae, base functions and asymptotic formulae. I–V. Philos. Trans. Roy. Soc. London Ser. A 301, pp. 75–162.
  • 12: 24.16 Generalizations
    24.16.10 a = 1 f χ ( a ) t e a t e f t 1 = n = 0 B n , χ t n n ! ,
    13: Philip J. Davis
    The surface color map can be changed from height-based to phase-based for complex valued functions, and density plots can be generated through strategic scaling. …
    14: 7 Error Functions, Dawson’s and Fresnel Integrals
    15: 14.24 Analytic Continuation
    14.24.1 P ν μ ( z e s π i ) = e s ν π i P ν μ ( z ) + 2 i sin ( ( ν + 1 2 ) s π ) e s π i / 2 cos ( ν π ) Γ ( μ ν ) 𝑸 ν μ ( z ) ,
    14.24.2 𝑸 ν μ ( z e s π i ) = ( 1 ) s e s ν π i 𝑸 ν μ ( z ) ,
    14.24.4 𝑸 ν , s μ ( z ) = e s μ π i 𝑸 ν μ ( z ) π i sin ( s μ π ) sin ( μ π ) Γ ( ν μ + 1 ) P ν μ ( z ) ,
    16: 14.23 Values on the Cut
    14.23.5 𝖰 ν μ ( x ) = 1 2 Γ ( ν + μ + 1 ) ( e μ π i / 2 𝑸 ν μ ( x + i 0 ) + e μ π i / 2 𝑸 ν μ ( x i 0 ) ) ,
    14.23.6 𝖰 ν μ ( x ) = e μ π i / 2 Γ ( ν + μ + 1 ) 𝑸 ν μ ( x ± i 0 ) ± 1 2 π i e ± μ π i / 2 P ν μ ( x ± i 0 ) .
    17: 14.15 Uniform Asymptotic Approximations
    14.15.4 𝖯 ν μ ( x ) = 1 Γ ( μ + 1 ) ( 1 α 2 ) μ / 2 ( 1 α 1 + α ) ( ν / 2 ) + ( 1 / 4 ) ( p x ) 1 / 2 e μ ρ ( 1 + O ( 1 μ ) ) ,
    14.15.9 𝑸 ν μ ( x ) = ( π 2 ) 1 / 2 ( e μ ) ν + ( 1 / 2 ) ( 1 α 1 + α ) μ / 2 ( 1 α 2 ) ( ν / 2 ) ( 1 / 4 ) ( α 2 + η 2 α 2 ( x 2 1 ) + 1 ) 1 / 4 I ν + 1 2 ( μ η ) ( 1 + O ( 1 μ ) ) ,
    14.15.20 β = e μ ( ν μ + 1 2 ν + μ + 1 2 ) ( ν / 2 ) + ( 1 / 4 ) ( ( ν + 1 2 ) 2 μ 2 ) μ / 2 ,
    18: 5.9 Integral Representations
    5.9.10 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 2 0 arctan ( t / z ) e 2 π t 1 d t ,
    5.9.10_1 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) z π 0 ln ( 1 e 2 π t ) t 2 + z 2 d t ,
    5.9.10_2 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 0 e z t ( 1 e t 1 1 t + 1 2 ) d t t ,
    19: 2.11 Remainder Terms; Stokes Phenomenon
    2.11.5 E p ( z ) = e z z p 1 Γ ( p ) 0 e z t t p 1 1 + t d t
    2.11.7 E p ( z ) 2 π i e p π i Γ ( p ) z p 1 + e z z s = 0 ( 1 ) s ( p ) s z s ,
    2.11.10 E p ( z ) = e z z s = 0 n 1 ( 1 ) s ( p ) s z s + ( 1 ) n 2 π Γ ( p ) z p 1 F n + p ( z ) ,
    2.11.11 F n + p ( z ) = e z 2 π 0 e z t t n + p 1 1 + t d t = Γ ( n + p ) 2 π E n + p ( z ) z n + p 1 .
    20: 19 Elliptic Integrals