About the Project

general%20lemniscatic%20case

AdvancedHelp

(0.004 seconds)

11—20 of 556 matching pages

11: Staff
  • Daniel W. Lozier, General Editor, NIST (retired)

  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, Chaps. 20, 22, 23

  • William P. Reinhardt, University of Washington, for Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, for Chaps. 20, 22, 23

  • 12: 23.4 Graphics
    §23.4(i) Real Variables
    Line graphs of the Weierstrass functions ( x ) , ζ ( x ) , and σ ( x ) , illustrating the lemniscatic and equianharmonic cases. …
    See accompanying text
    Figure 23.4.1: ( x ; g 2 , 0 ) for 0 x 9 , g 2 = 0. …(Lemniscatic case.) Magnify
    See accompanying text
    Figure 23.4.3: ζ ( x ; g 2 , 0 ) for 0 x 8 , g 2 = 0. …(Lemniscatic case.) Magnify
    See accompanying text
    Figure 23.4.5: σ ( x ; g 2 , 0 ) for 5 x 5 , g 2 = 0. …(Lemniscatic case.) Magnify
    13: 28.35 Tables
  • Blanch and Clemm (1965) includes values of Mc n ( 2 ) ( x , q ) , Mc n ( 2 ) ( x , q ) for n = 0 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . Also Ms n ( 2 ) ( x , q ) , Ms n ( 2 ) ( x , q ) for n = 1 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . In all cases q = 0 ( .05 ) 1 . Precision is generally 7D. Approximate formulas and graphs are also included.

  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • 14: Foreword
    Particular attention is called to the generous support of the National Science Foundation, which made possible the participation of experts from academia and research institutes worldwide. … November 20, 2009 …
    15: Publications
  • B. V. Saunders and Q. Wang (1999) Using Numerical Grid Generation to Facilitate 3D Visualization of Complicated Mathematical Functions, Technical Report NISTIR 6413 (November 1999), National Institute of Standards and Technology. PDF
  • B. V. Saunders and Q. Wang (2000) From 2D to 3D: Numerical Grid Generation and the Visualization of Complex Surfaces, Proceedings of the 7th International Conference on Numerical Grid Generation in Computational Field Simulations, Whistler, British Columbia, Canada, September 25-28, 2000. PDF
  • B. V. Saunders and Q. Wang (2005) Boundary/Contour Fitted Grid Generation for Effective Visualizations in a Digital Library of Mathematical Functions, Proceedings of the 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, June 11–18, 2005. pp. 61–71. PDF
  • A. Youssef (2007) Methods of Relevance Ranking and Hit-content Generation in Math Search, Proceedings of Mathematical Knowledge Management (MKM2007), RISC, Hagenberg, Austria, June 27–30, 2007. PDF
  • B. I. Schneider, B. R. Miller and B. V. Saunders (2018) NIST’s Digital Library of Mathematial Functions, Physics Today 71, 2, 48 (2018), pp. 48–53. PDF
  • 16: 16.24 Physical Applications
    §16.24 Physical Applications
    §16.24(i) Random Walks
    Generalized hypergeometric functions and Appell functions appear in the evaluation of the so-called Watson integrals which characterize the simplest possible lattice walks. …
    §16.24(iii) 3 j , 6 j , and 9 j Symbols
    Lastly, special cases of the 9 j symbols are F 4 5 functions with unit argument. …
    17: 32.8 Rational Solutions
    More generally, … In the general case assume γ δ 0 , so that as in §32.2(ii) we may set γ = 1 and δ = 1 . … In general, P IV  has rational solutions iff either … In the general case assume δ 0 , so that as in §32.2(ii) we may set δ = 1 2 . … In the general case, P VI  has rational solutions if …
    18: 14.29 Generalizations
    §14.29 Generalizations
    14.29.1 ( 1 z 2 ) d 2 w d z 2 2 z d w d z + ( ν ( ν + 1 ) μ 1 2 2 ( 1 z ) μ 2 2 2 ( 1 + z ) ) w = 0
    are called Generalized Associated Legendre Functions. As in the case of (14.21.1), the solutions are hypergeometric functions, and (14.29.1) reduces to (14.21.1) when μ 1 = μ 2 = μ . … …
    19: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • 20: 8.16 Generalizations
    §8.16 Generalizations
    For a generalization of the incomplete gamma function, including asymptotic approximations, see Chaudhry and Zubair (1994, 2001) and Chaudhry et al. (1996). Other generalizations are considered in Guthmann (1991) and Paris (2003).