About the Project

fractional or multiple

AdvancedHelp

(0.001 seconds)

31—40 of 178 matching pages

31: 17.4 Basic Hypergeometric Functions
17.4.3 ψ s r ( a 1 , a 2 , , a r b 1 , b 2 , , b s ; q , z ) = ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) = n = ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n = n = 0 ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n + n = 1 ( q / b 1 , q / b 2 , , q / b s ; q ) n ( q / a 1 , q / a 2 , , q / a r ; q ) n ( b 1 b 2 b s a 1 a 2 a r z ) n .
17.4.6 Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) = m , n 0 ( a ; q ) m + n ( b ; q ) m ( b ; q ) n x m y n ( q , c ; q ) m ( q , c ; q ) n ,
17.4.7 Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) = m , n 0 ( a , b ; q ) m ( a , b ; q ) n x m y n ( q ; q ) m ( q ; q ) n ( c ; q ) m + n ,
17.4.8 Φ ( 4 ) ( a , b ; c , c ; q ; x , y ) = m , n 0 ( a , b ; q ) m + n x m y n ( q , c ; q ) m ( q , c ; q ) n .
32: 10.10 Continued Fractions
§10.10 Continued Fractions
33: 10.33 Continued Fractions
§10.33 Continued Fractions
34: 2.6 Distributional Methods
However, they are multiples of the derivatives of t α . …
§2.6(iii) Fractional Integrals
The Riemann–Liouville fractional integral of order μ is defined by … If both f and g in (2.6.34) have asymptotic expansions of the form (2.6.9), then the distribution method can also be used to derive an asymptotic expansion of the convolution f g ; see Li and Wong (1994). … Multiplication of these expansions leads to …
35: Bibliography O
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • F. W. J. Olver (1977b) Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities. SIAM J. Math. Anal. 8 (4), pp. 673–700.
  • F. W. J. Olver (1977c) Second-order differential equations with fractional transition points. Trans. Amer. Math. Soc. 226, pp. 227–241.
  • 36: 4.21 Identities
    §4.21(iii) Multiples of the Argument
    This result is also valid when n is fractional or complex, provided that π z π . …
    37: 31.11 Expansions in Series of Hypergeometric Functions
    In this case the accessory parameter q is a root of the continued-fraction equation … The expansion (31.11.1) for a Heun function that is associated with any branch of (31.11.2)—other than a multiple of the right-hand side of (31.11.12)—is convergent inside the ellipse . …
    §31.11(v) Doubly-Infinite Series
    Schmidt (1979) gives expansions of path-multiplicative solutions (§31.6) in terms of doubly-infinite series of hypergeometric functions. …
    38: 31.6 Path-Multiplicative Solutions
    §31.6 Path-Multiplicative Solutions
    A further extension of the notation (31.4.1) and (31.4.3) is given by …These solutions are called path-multiplicative. …
    39: Wadim Zudilin
    Zudilin is author or coauthor of numerous publications including the book Neverending Fractions, An Introduction to Continued Fractions published by Cambridge University Press in 2014. …
    40: Bibliography S
  • D. M. Smith (1998) Algorithm 786: Multiple-precision complex arithmetic and functions. ACM Trans. Math. Software 24 (4), pp. 359–367.
  • D. M. Smith (1989) Efficient multiple-precision evaluation of elementary functions. Math. Comp. 52 (185), pp. 131–134.
  • D. M. Smith (1991) Algorithm 693: A FORTRAN package for floating-point multiple-precision arithmetic. ACM Trans. Math. Software 17 (2), pp. 273–283.
  • D. Sornette (1998) Multiplicative processes and power laws. Phys. Rev. E 57 (4), pp. 4811–4813.
  • A. H. Stroud (1971) Approximate Calculation of Multiple Integrals. Prentice-Hall Inc., Englewood Cliffs, N.J..