About the Project

for elliptic functions

AdvancedHelp

(0.012 seconds)

31—40 of 164 matching pages

31: 22.11 Fourier and Hyperbolic Series
§22.11 Fourier and Hyperbolic Series
22.11.7 ns ( z , k ) π 2 K csc ζ = 2 π K n = 0 q 2 n + 1 sin ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.13 sn 2 ( z , k ) = 1 k 2 ( 1 E K ) 2 π 2 k 2 K 2 n = 1 n q n 1 q 2 n cos ( 2 n ζ ) .
A related hyperbolic series is …
32: 20.9 Relations to Other Functions
§20.9(i) Elliptic Integrals
§20.9(ii) Elliptic Functions and Modular Functions
See §§22.2 and 23.6(i) for the relations of Jacobian and Weierstrass elliptic functions to theta functions. The relations (20.9.1) and (20.9.2) between k and τ (or q ) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485). As a function of τ , k 2 is the elliptic modular function; see Walker (1996, Chapter 7) and (23.15.2), (23.15.6). …
33: 23.23 Tables
§23.23 Tables
34: 23.4 Graphics
§23.4(i) Real Variables
See accompanying text
Figure 23.4.6: σ ( x ; 0 , g 3 ) for 5 x 5 , g 3 = 0. … Magnify
See accompanying text
Figure 23.4.7: ( x ) with ω 1 = K ( k ) , ω 3 = i K ( k ) for 0 x 9 , k 2 = 0. … Magnify
§23.4(ii) Complex Variables
See accompanying text
Figure 23.4.12: ( 3.7 ; a + i b , 0 ) for 5 a 3 , 4 b 4 . … Magnify 3D Help
35: 23.5 Special Lattices
§23.5(ii) Rectangular Lattice
§23.5(iii) Lemniscatic Lattice
§23.5(iv) Rhombic Lattice
For the case ω 3 = e π i / 3 ω 1 see §23.5(v).
§23.5(v) Equianharmonic Lattice
36: 22.9 Cyclic Identities
§22.9 Cyclic Identities
§22.9(i) Notation
37: William P. Reinhardt
He has recently carried out research on non-linear dynamics of Bose–Einstein condensates that served to motivate his interest in elliptic functions. …
  • 38: 29.18 Mathematical Applications
    29.18.6 d 2 u 2 d β 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( β , k ) ) u 2 = 0 ,
    29.18.7 d 2 u 3 d γ 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( γ , k ) ) u 3 = 0 ,
    39: 23.20 Mathematical Applications
    §23.20 Mathematical Applications
    §23.20(i) Conformal Mappings
    §23.20(iii) Factorization
    §23.20(v) Modular Functions and Number Theory
    40: 29.8 Integral Equations
    29.8.1 x = k 2 sn ( z , k ) sn ( z 1 , k ) sn ( z 2 , k ) sn ( z 3 , k ) k 2 k 2 cn ( z , k ) cn ( z 1 , k ) cn ( z 2 , k ) cn ( z 3 , k ) + 1 k 2 dn ( z , k ) dn ( z 1 , k ) dn ( z 2 , k ) dn ( z 3 , k ) ,
    where z , z 1 , z 2 , z 3 are real, and sn , cn , dn are the Jacobian elliptic functions22.2). …
    29.8.6 y = 1 k dn ( z , k ) dn ( z 1 , k ) .
    29.8.7 𝐸𝑐 ν 2 m + 1 ( z 1 , k 2 ) w 2 ( K ) + w 2 ( K ) w 2 ( 0 ) = k 2 sn ( z 1 , k ) K K sn ( z , k ) d 𝖯 ν ( y ) d y 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) d z ,
    29.8.9 𝐸𝑠 ν 2 m + 2 ( z 1 , k 2 ) d w 2 ( z ) / d z | z = K d w 2 ( z ) / d z | z = K w 2 ( 0 ) = k 4 k sn ( z 1 , k ) cn ( z 1 , k ) K K sn ( z , k ) cn ( z , k ) d 2 𝖯 ν ( y ) d y 2 𝐸𝑠 ν 2 m + 2 ( z , k 2 ) d z .