About the Project

expansions%20of%20solutions%20in%20series%20of

AdvancedHelp

(0.009 seconds)

11—14 of 14 matching pages

11: Bibliography L
  • T. M. Larsen, D. Erricolo, and P. L. E. Uslenghi (2009) New method to obtain small parameter power series expansions of Mathieu radial and angular functions. Math. Comp. 78 (265), pp. 255–274.
  • E. W. Leaver (1986) Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics. J. Math. Phys. 27 (5), pp. 1238–1265.
  • J. L. López and E. Pérez Sinusía (2014) New series expansions for the confluent hypergeometric function M ( a , b , z ) . Appl. Math. Comput. 235, pp. 26–31.
  • J. L. López and N. M. Temme (2013) New series expansions of the Gauss hypergeometric function. Adv. Comput. Math. 39 (2), pp. 349–365.
  • Y. L. Luke (1959) Expansion of the confluent hypergeometric function in series of Bessel functions. Math. Tables Aids Comput. 13 (68), pp. 261–271.
  • 12: Bibliography C
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • C. W. Clenshaw (1957) The numerical solution of linear differential equations in Chebyshev series. Proc. Cambridge Philos. Soc. 53 (1), pp. 134–149.
  • H. S. Cohl (2013a) Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 042, 26.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • E. T. Copson (1965) Asymptotic Expansions. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, New York.
  • 13: Bibliography G
  • G. Gasper and M. Rahman (1990) Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge.
  • V. I. Gromak and N. A. Lukaševič (1982) Special classes of solutions of Painlevé equations. Differ. Uravn. 18 (3), pp. 419–429 (Russian).
  • V. I. Gromak (1976) The solutions of Painlevé’s fifth equation. Differ. Uravn. 12 (4), pp. 740–742 (Russian).
  • V. I. Gromak (1978) One-parameter systems of solutions of Painlevé equations. Differ. Uravn. 14 (12), pp. 2131–2135 (Russian).
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.
  • 14: 2.11 Remainder Terms; Stokes Phenomenon
    Secondly, the asymptotic series represents an infinite class of functions, and the remainder depends on which member we have in mind. …
    §2.11(v) Exponentially-Improved Expansions (continued)
    For illustration, we give re-expansions of the remainder terms in the expansions (2.7.8) arising in differential-equation theory. … In this way we arrive at hyperasymptotic expansions. … The transformations in §3.9 for summing slowly convergent series can also be very effective when applied to divergent asymptotic series. …